Novel Method for an Optimised Calculation of the Cross-Sectional Distribution of Live Loads on Girder Bridge Decks
Downloads
Doi: 10.28991/CEJ-2022-08-03-01
Full Text: PDF
Downloads
[2] Rombouts, J., Lombaert, G., De Laet, L., & Schevenels, M. (2019). A novel shape optimization approach for strained gridshells: Design and construction of a simply supported gridshell. Engineering Structures, 192, 166–180. doi:10.1016/j.engstruct.2019.04.101.
[3] Veenendaal, D., & Block, P. (2012). An overview and comparison of structural form finding methods for general networks. International Journal of Solids and Structures, 49(26), 3741–3753. doi:10.1016/j.ijsolstr.2012.08.008.
[4] Shi, J. X. (2019). Application of t-beam grillage model in reconstruction design of dangerous bridge. Proceedings - 2019 4th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2019, 830–832. doi:10.1109/ICMCCE48743.2019.00190.
[5] Connor, R. J., & Fisher, J. W. (2006). Consistent Approach to Calculating Stresses for Fatigue Design of Welded Rib-to-Web Connections in Steel Orthotropic Bridge Decks. Journal of Bridge Engineering, 11(5), 517–525. doi:10.1061/(asce)1084-0702(2006)11:5(517)
[6] Ekholm, K., Crocetti, R., & Kliger, R. (2013). Stress-Laminated Timber Decks Subjected to Eccentric Loads in the Ultimate Limit State. Journal of Bridge Engineering, 18(5), 409–416. doi:10.1061/(asce)be.1943-5592.0000375.
[7] Zhou, Y., & Ji, Y. (2017). Comparison and analysis of the results of grillage method and single beam method to continuous box girder with variable width. 4th International Conference on Transportation Information and Safety, ICTIS 2017 - Proceedings, 1118–1121. doi:10.1109/ICTIS.2017.8047910.
[8] Gheitasi, A., & Harris, D. K. (2015). Overload Flexural Distribution Behavior of Composite Steel Girder Bridges. Journal of Bridge Engineering, 20(5), 04014076. doi:10.1061/(asce)be.1943-5592.0000671.
[9] Hess, S., Filosa, F., Ross, B. E., & Cousins, T. E. (2020). Live Load Testing of NEXT-D Bridges to Determine Distribution Factors for Moment. Journal of Performance of Constructed Facilities, 34(4), 04020063. doi:10.1061/(asce)cf.1943-5509.0001452.
[10] Huang, J., & Davis, J. (2018). Live Load Distribution Factors for Moment in NEXT Beam Bridges. Journal of Bridge Engineering, 23(3), 06017010. doi:10.1061/(asce)be.1943-5592.0001202.
[11] Semendary, A. A., Steinberg, E. P., Walsh, K. K., & Barnard, E. (2017). Live-Load Moment-Distribution Factors for an Adjacent Precast Prestressed Concrete Box Beam Bridge with Reinforced UHPC Shear Key Connections. Journal of Bridge Engineering, 22(11), 04017088. doi:10.1061/(asce)be.1943-5592.0001127.
[12] Kong, S., Zhuang, L., Tao, M., & Fan, J. (2020). Load distribution factor for moment of composite bridges with multi-box girders. Engineering Structures, 215, 110716–1 19. doi:10.1016/j.engstruct.2020.110716.
[13] Terzioglu, T., Hueste, M. B. D., & Mander, J. B. (2017). Live Load Distribution Factors for Spread Slab Beam Bridges. Journal of Bridge Engineering, 22(10), 04017067. doi:10.1061/(asce)be.1943-5592.0001100.
[14] Kim, Y. J., Tanovic, R., & Wight, R. G. (2010). Load Configuration and Lateral Distribution of NATO Wheeled Military Trucks for Steel I-Girder Bridges. Journal of Bridge Engineering, 15(6), 740–748. doi:10.1061/(asce)be.1943-5592.0000113.
[15] Faith Yalcin, O., & Dicleli, M. (2013). Comparative study on the effect of number of girders on live load distribution in integral abutment and simply supported bridge girders. Advances in Structural Engineering, 16(6), 1011–1034. doi:10.1260/1369-4332.16.6.1011.
[16] Harris, D. K. (2010). Assessment of flexural lateral load distribution methodologies for stringer bridges. Engineering Structures, 32(11), 3443–3451. doi:10.1016/j.engstruct.2010.06.008.
[17] EHE – 08. (2010). Effective width of the flange in linear parts. Structural Concrete Instruction, Ministry of Public Works, Government of Spain. Available online: https://www.mitma.gob.es/recursos_mfom/1820100.pdf (accessed on December 2021).
[18] RPX – 95. (2003). Recommendations for the Road Compound Bridges Project (RPX-95). Ministry of Public Works, Government of Spain. Available online: https://normativadecarreteras.com/listing/recomendaciones-para-el-proyecto-de-puentes-mixtos-para-carreteras-rpx-95/ (accessed on December 2021).
[19] AASHTO. (1931). Standard specifications for highway bridges, First Edition. American Association of State Highway Officials, Washington, DC, United States.
[20] Dwairi, H., Al-Hattamleh, O., & Al-Qablan, H. (2019). Evaluation of live-load distribution factors for high-performance prestressed concrete girder bridges. Bridge Structures, 15(1–2), 15–26. doi:10.3233/BRS-190149.
[21] Torres, V., Zolghadri, N., Maguire, M., Barr, P., & Halling, M. (2019). Experimental and Analytical Investigation of Live-Load Distribution Factors for Double Tee Bridges. Journal of Performance of Constructed Facilities, 33(1), 04018107. doi:10.1061/(asce)cf.1943-5509.0001259.
[22] Razzaq, M. K., Sennah, K., & Ghrib, F. (2021). Live load distribution factors for simply-supported composite steel I-girder bridges. Journal of Constructional Steel Research, 181, 106612. doi:10.1016/j.jcsr.2021.106612.
[23] Baker, W. F., Beghini, L. L., Mazurek, A., Carrion, J., & Beghini, A. (2013). Maxwell's reciprocal diagrams and discrete Michell frames. Structural and Multidisciplinary Optimization, 48(2), 267–277. doi:10.1007/s00158-013-0910-0.
[24] Dally, James W., William F. Riley, and A. S. Kobayashi. (1978). Experimental stress analysis. McGraw Hill, New York, United States.
[25] Zhou, K., & Wu, Z. Y. (2017). Strain gauge placement optimization for structural performance assessment. Engineering Structures, 141, 184–197. doi:10.1016/j.engstruct.2017.03.031.
[26] Iriarte, X., Aginaga, J., Gainza, G., Ros, J., & Bacaicoa, J. (2021). Optimal strain-gauge placement for mechanical load estimation in circular cross-section shafts. Measurement: Journal of the International Measurement Confederation, 174. doi:10.1016/j.measurement.2020.108938.
[27] Hoffmann, K. (2012). An introduction to stress analysis and transducer design using strain gauges. HBM, Darmstadt, Germany.
[28] Ministry of Public Works. (1999). Recommendations for carrying out reception load tests on road bridges. General Directorate of Highways. Government of Spain. Available online: https://www.mitma.es/recursos_mfom/0850100.pdf (accessed on February 2022).
[29] Kuang, Y., & Ou, J. (2008). Self-repairing performance of concrete beams strengthened using superelastic SMA wires in combination with adhesives released from hollow fibers. Smart Materials and Structures, 17(2). doi:10.1088/0964-1726/17/2/025020.
[30] Ghani, S. N. (1989). A versatile algorithm for optimization of a nonlinear non-differentiable constrained objective function. UKAEA Harwell Rep. No. R, 13714.
[31] Hassanain, M. A., & Loov, R. E. (2003). Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering, 30(5), 841–849. doi:10.1139/l03-045.
[32] Jones, H. L. (1985). Minimum Cost Prestressed Concrete Beam Design. Journal of Structural Engineering, 111(11), 2464–2478. doi:10.1061/(asce)0733-9445(1985)111:11(2464).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.