A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation

Ali A. Ali, Tareq S. Al-Attar, Waleed A. Abbas


Geopolymer Concrete (GPC) is a new class of concrete that presents a vital improvement in sustainability and the environment, particularly in recycling and alternative construction methods. Geopolymers offer a sustainable, low energy consumption, low carbon footprint, and a 100% substitute for the Portland cement binder for civil infrastructure applications. Furthermore, many aluminosilicate materials can be obtained as by-products of other processes, such as coal combustion or the thermal pulping of wood. In addition, slag and fly ash are necessary to source materials for geopolymer. Therefore, geopolymer is considered a solution for waste management that can minimize greenhouse gas emissions. In this statistical study, the present experimental work and found experimental data were collected from local and international literature and were used to build and validate the statistical models to predict the strength development of Geopolymer concrete with binary and ternary systems of source materials. The main independent variable was R, representing the ratio of SiO2/Al2O3by weight in the source material. The investigated range of R was 1.42–3.6. Nine concrete geopolymer mixes with R in the above range represent the experimental part carried out. The targeted properties were compressive, splitting, and flexural strengths. The experimental results showed that the R ratio significantly influences the mechanical performance of the final product. The compressive strength improved by 82, 86, 93, and 95%, when metakaolin content was partially replaced by fly ash and GGBS by percentages of 30, 70, 72, 90, and 95% for mixes 2, 3, 5, 7, and 8 respectively. Also, when GGBS partially replaced fly ash content by 36% and 100% for mixes 6 and 9, compressive strength improved by 10.6% and 41.8%, respectively, compared to mix4. Furthermore, the statistical study revealed that the R ratio might be utilized to determine geopolymer strength with reasonable accuracy. The built models were developed by linear and non-linear regression analysis using SPSS software, version 25.


Doi: 10.28991/CEJ-2022-08-03-04

Full Text: PDF


Geopolymer Concrete; Fly Ash; Ground Granulated Blast Furnace Slag; Metakaolin; Alkaline Activator; Oven Curing.


Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2005). Fly Ash-Based Geopolymer Concrete. Australian Journal of Structural Engineering, 6(1), 77–86. doi:10.1080/13287982.2005.11464946.

Sanjuán, M. Á., Andrade, C., Mora, P., & Zaragoza, A. (2020). Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Applied Sciences, 10(1), 339. doi:10.3390/app10010339.

Mehta, A., & Siddique, R. (2017). Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Construction and Building Materials, 150, 792–807. doi:10.1016/j.conbuildmat.2017.06.067.

Schmücker, M., & MacKenzie, K. J. D. (2005). Microstructure of sodium polysialate siloxo geopolymer. Ceramics International, 31(3), 433–437. doi:10.1016/j.ceramint.2004.06.006.

Van Chanh, N., Trung, B. D., & Van Tuan, D. (2008). Recent research geopolymer concrete. In The 3rd ACF International Conference-ACF/VCA, Vietnam 18, 235-241.

Duxson, P., & Provis, J. L. (2008). Designing precursors for geopolymer cements. Journal of the American Ceramic Society, 91(12), 3864–3869. doi:10.1111/j.1551-2916.2008.02787.x.

De Silva, P., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. doi:10.1016/j.cemconres.2007.01.003.

Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven, W. M., & van Deventer, J. S. J. (2007). The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(1), 8–20. doi:10.1016/j.colsurfa.2006.05.044.

Fletcher, R. A., MacKenzie, K. J. D., Nicholson, C. L., & Shimada, S. (2005). The composition range of aluminosilicate geopolymers. Journal of the European Ceramic Society, 25(9), 1471–1477. doi:10.1016/j.jeurceramsoc.2004.06.001.

Autef, A., Joussein, E., Gasgnier, G., & Rossignol, S. (2012). Role of the silica source on the geopolymerization rate. Journal of Non-Crystalline Solids, 358(21), 2886–2893. doi:10.1016/j.jnoncrysol.2012.07.015.

Diaz, E. I., Allouche, E. N., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992–996. doi:10.1016/j.fuel.2009.09.012.

Williams, R. P., & Van Riessen, A. (2010). Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel, 89(12), 3683–3692. doi:10.1016/j.fuel.2010.07.031.

van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2003). The characterisation of source materials in fly ash-based geopolymers. Materials Letters, 57(7), 1272–1280. doi:10.1016/S0167-577X(02)00971-0.

Brouwers, H. J. H., & Van Eijk, R. J. (2002). Fly ash reactivity: Extension and application of a shrinking core model and thermodynamic approach. Journal of Materials Science, 37(10), 2129–2141. doi:10.1023/A:1015206305942.

Pietersen, H. S., Fraay, A. L. A., & Bijen, J. M. (1989). Reactivity of Fly Ash At High pH. MRS Proceedings, 178, 139–157. doi:10.1557/proc-178-139.

Chen-Tan, N. W., Van Riessen, A., Ly, C. V., & Southam, D. C. (2009). Determining the reactivity of a fly ash for production of geopolymer. Journal of the American Ceramic Society, 92(4), 881–887. doi:10.1111/j.1551-2916.2009.02948.x.

Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1–3), 111–119. doi:10.1016/j.micromeso.2005.11.015.

Al-Shathr, B. S., Al-Attar, T. S., & Hasan, Z. A. (2016). Effect of curing system on metakaolin based geopolymer concrete. Journal of University of Babylon, 24(3), 569-576.

Shamsa, M. H., Al-Shathr, B. S., & Al-Attar, T. S. (2018). Effect of Pozzolanic Materials on Compressive Strength of Geopolymer Concrete. Kufa Journal of Engineering, 9(3), 26–36. doi:10.30572/2018/kje/090303.

Dvorkin, L., Bordiuzhenko, O., Zhitkovsky, V., & Marchuk, V. (2019). Mathematical modeling of steel fiber reinforced concrete properties and selecting its effective composition. IOP Conference Series: Materials Science and Engineering, 708(1), 012085. doi:10.1088/1757-899x/708/1/012085.

Iraqi Specification No. 45. (1984). Natural Aggregate Resource That Used in Building and Concrete (Vol. 45). Iraqi Specification Standard, Baghdad, Iraq. (In Arabic).

ASTM C494/C494M – 17. (2017). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States.

Al-Shathr, B. S., Al-Attar, T. S., & Hasan, Z. A. (2016). Effect of curing system on metakaolin based geopolymer concrete. Journal of University of Babylon, 24(3), 569-576.

Bernal, S. A., Mejía De Gutiérrez, R., & Provis, J. L. (2012). Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 33, 99–108. doi:10.1016/j.conbuildmat.2012.01.017.

Alhifadhi, M. A. (2015). Structural Behavior of Reinforced Fly Ash Based Geopolymer Concrete T-beams. PhD thesis, University of Technology, Baghdad, Iraq.

Bernal, S. A., Mejía De Gutiérrez, R., & Provis, J. L. (2012). Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 33, 99–108. doi:10.1016/j.conbuildmat.2012.01.017.

Giannopoulou, I., Dimas, D., Maragkos, I., & Panias, D. (2009). Utilization of metallurgical solid by-products for the development of inorganic polymeric construction materials. Global Nest Journal, 11(2), 127–136. doi:10.30955/gnj.000589.

Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2015). Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Construction and Building Materials, 86, 64–74. doi:10.1016/j.conbuildmat.2015.03.078.

Weng, L., & Sagoe-Crentsil, K. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems. Journal of Materials Science, 42(9), 2997–3006. doi:10.1007/s10853-006-0820-2.

Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58. doi:10.1016/j.colsurfa.2005.06.060.

Kupwade-Patil, K., & Allouche, E. N. (2013). Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 25(1), 131–139. doi:10.1061/(asce)mt.1943-5533.0000579.

Kusbiantoro, A., Nuruddin, M. F., Shafiq, N., & Qazi, S. A. (2012). The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Construction and Building Materials, 36, 695–703. doi:10.1016/j.conbuildmat.2012.06.064.

Partha, S. D., Pradip, N., & Prabir, K. S. (2013). Strength and permeation properties of slag blended fly ash based geopolymer concrete. Advanced Materials Research, 651, 168–173. doi:10.4028/www.scientific.net/AMR.651.168.

Nuruddin, M. F., Demie, S., & Shafiq, N. (2011). Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete. Canadian Journal of Civil Engineering, 38(11), 1196–1203. doi:10.1139/l11-077.

Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188–1194. doi:10.1016/j.scient.2012.07.006.

Noushini, A., & Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464–477. doi:10.1016/j.conbuildmat.2016.02.210.

Samdani, G. & Quadar, G. (2017). A study of geopolymer concrete as sustainable cementless concrete. Global Journal of Engineering Science and Researches, 4(9), doi:10.5281/zenodo.999313.

Divvala, S., & Rani, M. S. (2021). Strength properties and durability studies on modified geopolymer concrete composites incorporating GGBS and metakaolin. Applied Nanoscience. doi:10.1007/s13204-021-02015-y.

Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2018). A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 16(1), 53–63. doi:10.1080/14488353.2018.1450716.

Rao, K. V., Swaroop, A. H. L., Dhanasri, K., & Sailaja, K. (2015). Study on strength properties of low calcium based geopolymer concrete. International Journal of Civil Engineering and Technology, 6(11).

Nguyen, K. T., Lee, Y. H., Lee, J., & Ahn, N. (2013). Acid Resistance and Curing Properties for Green Fly Ash-geopolymer Concrete. Journal of Asian Architecture and Building Engineering, 12(2), 317–322. doi:10.3130/jaabe.12.317.

Ryu, G. S., Ahn, G. H., Koh, K. T., & Lee, J. H. (2013). Compressive strength properties of fly ash-based geopolymer concrete. Advanced Materials Research, 741, 49–54. doi:10.4028/www.scientific.net/AMR.741.49.

Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2015). Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Construction and Building Materials, 83, 128–135. doi:10.1016/j.conbuildmat.2015.03.009.

Sellar, T., & Arulrajah, A. A. (2018). The Role of Social Support on Job Burnout in the Apparel Firm. International Business Research, 12(1), 110-118. doi:10.5539/ibr.v12n1p110.

De Larrard, F., & Malier, Y. (1992). Engineering properties of very high performance concrete. High Performance Concrete, from Material to Structure, 85-114.

Favre, R., & Charif, H. (1994). Basic model and simplified calculations of deformations according to the CEB-FIP model code 1990. ACI Structural Journal, 91(2), 169–177. doi:10.14359/4602.

Gardner, N. J., & Poon, S. M. (1976). Time and Temperature Effects on Tensile, Bond, and Compressive Strengths. J Am Concr Inst, 73(7), 405–409. doi:10.14359/11081.

Ramujee, K., & Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. doi:10.1016/j.matpr.2017.02.175.

Raphael, J. M. (1984). Tensile Strength of Concrete. Journal of the American Concrete Institute, 81(2), 158–165. doi:10.1007/978-3-642-41714-6_200519.

Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. doi:10.1016/j.conbuildmat.2013.05.069.

Zaetang, Y., Wongsa, A., Sata, V., & Chindaprasirt, P. (2015). Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete. Construction and Building Materials, 96, 289–295. doi:10.1016/j.conbuildmat.2015.08.076.

ACI 318R-14. (2014). Building Code Requirements for Structural Concrete and Commentary. Building Code Requirements for Structural Concrete and Commentary, American concrete institute, Michigan, United States.

Albitar, M., Visintin, P., Mohamed Ali, M. S., & Drechsler, M. (2015). Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 19(5), 1445–1455. doi:10.1007/s12205-014-1254-z.

Hardjito, D., & Rangan, B. (2005). Development and Properties of Low Calcium Fly Ash. Curtin University of Technology, Perth, Australia. Available online: https://espace.curtin.edu.au/bitstream/handle/20.500.11937/5594/19327_downloaded_ stream_419.pdf?sequence=2&isAllowed=y (accessed on December 2021).

Raijiwala, D. B., & Patil, H. S. (2010). Geopolymer concrete A green concrete. 2nd International Conference on Chemical, Biological and Environmental Engineering, (2-4 Nov. 2010), Cairo, Egypt. doi:10.1109/icbee.2010.5649609

Nguyen, N. H., Smith, S. M., Staniford, M. D., & van Senden, M. F. (2010). Geopolymer concrete—Concrete goes green. Research report, School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia.

Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials and Design, 36, 191–198. doi:10.1016/j.matdes.2011.10.036.

Fernández-Jiménez, A. M., Palomo, A., & López-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106–112. doi:10.14359/15261.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-04


  • There are currently no refbacks.

Copyright (c) 2022 waleed abbas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.