Active Earth Pressure Acting on Circular Shafts Using Numerical Approach

Abdelmajid Meftah, Naïma Benmebarek, Sadok Benmebarek


Retaining walls in axi-symmetric conditions and in plane strains have been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line, and numerical techniques by finite elements or finite differences). The finite element or finite difference method provides more accurate solutions to the problem than the limit equilibrium method. In this paper, a new model of retaining wall in the axi-symmetry conditions under outward pressure is considered, this case can be widely used in the design of grain silos, buildings and road constructions. Numerical calculations using FLAC are reported to evaluate the evolution of the earth pressure distribution on a cylindrical wall filled with granular material and subjected to radial displacement. A parametric study is carried out in order to evaluate the distribution of the active earth pressure on the wall according to the radius, the angle of friction of the granular material, and the angle of friction of the interface granular material-wall. This study shows that there is an effect of the circular shape and the inclination of the wall on the active earth pressures.


Doi: 10.28991/CEJ-2022-08-04-09

Full Text: PDF


Earth Pressure; Axial Symmetry; Finite Difference Method; Slip Rate; Vertical Circular Retaining Wall.


Coulomb, C.A. (1776). Essay on an application of the rules of maximis and minimis to some problems of statics relating to architecture. Memoirs of Mathematics and Physics, Presented to the Royal Academy of Sciences, by various Scholars, and read in its Assemblies, Paris, France, Vol. 7, 343–382. (In France).

Rankine, W. J. M. (1857). II. On the stability of loose earth. Philosophical Transactions of the Royal Society of London, 147 (1 January1857), 9–27. doi:10.1098/rstl.1857.0003.

Prater, E. G. (1977). Examination of Some Theories of Earth Pressure on Shaft Linings. Canadian Geotechnical Journal, 14(1), 91–106. doi:10.1139/t77-007.

Berezantzev, V. G. (1958). Earth pressure on the cylindrical retaining wall. Proceedings Conference on Earth Pressure Problems, Butterworths, London, vol. 2, September 1958, 21–27.

Cheng, Y. M., & Hu, Y. Y. (2005). Active earth pressure on circular shaft lining obtained by simplified slip line solution with general tangential stress coefficient. Chinese Journal of Geotechnical Engineering, 2005, 27: 110, 115.

Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley & Son, Hoboken, United States. doi:10.1002/9780470172766.

Keshavarz, A., & Ebrahimi, M. (2017). Axisymmetric passive lateral earth pressure of retaining walls. KSCE Journal of Civil Engineering, 21(5), 1706-1716. doi:10.1007/s12205-016-0502-9.

Tang, Z. (2020). Design and Construction of the Circular Shape Shaft Using the Reverse Construction Method. In E3S Web of Conferences (Vol. 198, p. 02011). EDP Sciences. doi:10.1051/e3sconf/202019802011.

Chehadeh, A., Turan, A., Abed, F., & Yamin, M. (2019). Lateral earth pressures acting on circular shafts considering soil-structure interaction. International Journal of Geotechnical Engineering, 13(2), 139–151. doi:10.1080/19386362.2017.1328081.

Xiong, G. J., Wang, J. H., & Chen, J. J. (2019). Theory and practical calculation method for axisymmetric active earth pressure based on the characteristics method considering the compatibility condition. Applied Mathematical Modelling, 68, 563–582. doi:10.1016/j.apm.2018.11.022.

Hu, W., Liu, K., Zhu, X., Tong, X., & Zhou, X. (2020). Active Earth Pressure against Rigid Retaining Walls for Finite Soils in Sloping Condition considering Shear Stress and Soil Arching Effect. Advances in Civil Engineering (Vol. 2020). doi:10.1155/2020/6791301.

Walz, B. (1973). Apparatus for measuring the spatial earth pressure on a round model caisson. Construction Machinery and Engineering, 20, 339-344. (In France).

Lade, P. V., Jessberger, H. L., Makowski, E., & Jordan, P. (1981). Modeling of Deep Shafts in Centrifuge Tests. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, vol. 1, 15-19 June 1981, 683–691. doi:10.1016/0148-9062(83)91480-8.

Fujii, T., Hagiwara, T., Ueno, K., & Taguchi, A. (1994). Experiment and analysis of earth pressure on an axisymmetric shaft in sand. Proceedings of the International Conference Centrifuge 94, Balkema Rotterdam, Netherlands, August 1994, 791–796.

Herten, M., & Pulsfort, M. (1999). Determination of spatial earth pressure on circular shaft constructions. Granular Matter, 2(1), 1–7. doi:10.1007/s100350050028.

Imamura, S., Nomoto, T., Fujii, T and Hagiwar, T. (2000). Earth pressures acting on a deep shaft and the movements of adjacent ground in sand. Geotechnical Aspects of Underground Construction in Soft Ground. Balkema, Rotterdam, Tokyo, Japan (July 1999): 647–652

Chun, B., & Shin, Y. (2006). Active earth pressure acting on the cylindrical retaining wall of a shaft. Journal of the Korean GEO-environmental Society, 7(4), 15-24.

Tobar, T., & Meguid, M. A. (2011). Experimental Study of the Earth Pressure Distribution on Cylindrical Shafts. Journal of Geotechnical and Geoenvironmental Engineering, 137(11), 1121–1125. doi:10.1061/(asce)gt.1943-5606.0000535.

Cho, J., Lim, H., Jeong, S., & Kim, K. (2015). Analysis of lateral earth pressure on a vertical circular shaft considering the 3D arching effect. Tunnelling and Underground Space Technology, 48, 11–19. doi:10.1016/j.tust.2015.01.002.

Paik, K. H., & Salgado, R. (2003). Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique, 53(7), 643–653. doi:10.1680/geot.2003.53.7.643.

Benmoussa, S., Benmebarek, S., & Benmebarek, N. (2021). Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils. Civil Engineering Journal, 7(5), 775–785. doi:10.28991/cej-2021-03091689.

FLAC (2005). Fast Lagrangian Analysis of Continua. Vol. I, User’s Manual, Vol. II. Verification Problems and Example Applications (2nd Edition) (FLAC3D Version 3.0), Minneapolis, Unites States.

Soubra, A. H., & Macuh, B. (2002). Active and passive earth pressure coefficients by a kinematical approach. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 155(2), 119-131. doi:10.1680/geng.2002.155.2.119.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-04-09


  • There are currently no refbacks.

Copyright (c) 2022 Abdelmajid Meftah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.