Slope Reinforcement Model Scale Test With X-Block
Downloads
Doi: 10.28991/CEJ-2022-08-03-014
Full Text: PDF
[2] Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106. doi:10.1007/s10346-011-0283-7.
[3] Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A. A., & Guzzetti, F. (2018). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Science of the Total Environment, 610–611, 867–879. doi:10.1016/j.scitotenv.2017.08.064.
[4] Harianto, T., Yunus, M., & Walenna, M. A. (2021). Bearing Capacity of Raft-Pile Foundation Using Timber Pile on Soft Soil. International Journal of GEOMATE, 21(86), 108–114. doi:10.21660/2021.86.j2294.
[5] Zhang, M., & McSaveney, M. J. (2018). Is air pollution causing landslides in China? Earth and Planetary Science Letters, 481, 284–289. doi:10.1016/j.epsl.2017.10.045.
[6] Harianto, T., Hamzah, S., Nur, S. H., Abdurrahman, M. A., Latief, R. U., Fadliah, I., & Walenna, A. (2013, September). Biogrouting stabilization on marine sandy clay soil. Proceedings of the 7th International Conference on Asian and Pacific Coasts, Indonesia.
[7] Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Le Bissonnais, Y., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87(1), 60–69. doi:10.1016/j.catena.2011.05.006.
[8] Harianto, T., Samang, L., Suheriyatna, Y. S., & Sandyutama, Y. (2016). Field Investigation of the Performance of Soft Soil Reinforcement with Inclined Pile. In 5th International Conference on Geotechnical and Geophysical Site Characterisation, Queensland, Australia.
[9] Erdawaty, Harianto, T., Muhiddin, A. B., & Arsyad, A. (2020). Experimental study on bearing capacity of alkaline activated granular asphalt concrete columns on soft soils. Civil Engineering Journal (Iran), 6(12), 2363–2374. doi:10.28991/cej-2020-03091623.
[10] Liu, S., Fan, K., & Xu, S. (2019). Field study of a retaining wall constructed with clay-filled soilbags. Geotextiles and Geomembranes, 47(1), 87–94. doi:10.1016/j.geotexmem.2018.11.001.
[11] Muhiddin, A. B., & Tangkeallo, M. M. (2020). Correlation of unconfined compressive strength and California bearing ratio in laterite soil stabilization using varied zeolite content activated by waterglass. Materials Science Forum, 998 MSF, 323–328. doi:10.4028/www.scientific.net/MSF.998.323.
[12] Wang, X., & Niu, R. (2009). Spatial forecast of landslides in Three Gorges based on spatial data mining. Sensors, 9(3), 2035–2061. doi:10.3390/s90302035.
[13] Raghuvanshi, T. K., Ibrahim, J., & Ayalew, D. (2014). Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation. Journal of African Earth Sciences, 99(PA2), 595–612. doi:10.1016/j.jafrearsci.2014.05.004.
[14] Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81. doi:10.1007/s10346-003-0006-9.
[15] Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121-146.
[16] Casagli, N., Catani, F., Puglisi, C., Delmonaco, G., Ermini, L., & Margottini, C. (2004). An inventory-based approach to landslide susceptibility assessment and its application to the Virginio River Basin, Italy. Environmental and Engineering Geoscience, 10(3), 203–216. doi:10.2113/10.3.203.
[17] di Lernia, A., Cotecchia, F., Elia, G., Tagarelli, V., Santaloia, F., & Palladino, G. (2022). Assessing the influence of the hydraulic boundary conditions on clay slope stability: The Fontana Monte case study. Engineering Geology, 297. doi:10.1016/j.enggeo.2021.106509.
[18] Azarafza, M., Akgün, H., Ghazifard, A., Asghari-Kaljahi, E., Rahnamarad, J., & Derakhshani, R. (2021). Discontinuous rock slope stability analysis by limit equilibrium approaches–a review. International Journal of Digital Earth, 14(12), 1918–1941. doi:10.1080/17538947.2021.1988163.
[19] Liu, Z., Wang, X., Yin, Y., Li, J., & Shao, G. (2022). Stability analysis of an unsaturated clay slope based on the coupled effect of temperature and saturation. Quarterly Journal of Engineering Geology and Hydrogeology, 55(2), 1-14. doi:10.1144/qjegh2021-009.
[20] Dawson, E.M., & Roth, W.H. (2020). Slope stability analysis with FLAC. FLAC and Numerical Modeling in Geomechanics. CRC Press, Florida, United States. doi:10.1201/9781003078531-2.
[21] Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S., & Mitri, H. S. (2019). Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118, 505–518. doi:10.1016/j.ssci.2019.05.046.
[22] Qi, C., & Tang, X. (2018). Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Computers and Industrial Engineering, 118, 112–122. doi:10.1016/j.cie.2018.02.028.
[23] Salmasi, F., Chamani, M. R., & Farsadi Zadeh, D. (2012). Experimental study of energy dissipation over stepped gabion spillways with low heights. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 36(C2), 253–264. doi: 10.22099/IJSTC.2012.640.
[24] Najafzadeh, M., Rezaie-Balf, M., & Tafarojnoruz, A. (2018). Prediction of riprap stone size under overtopping flow using data-driven models. International Journal of River Basin Management, 16(4), 505–512. doi:10.1080/15715124.2018.1437738.
[25] Mohamed, M. H., Ahmed, M., & Mallick, J. (2021). An experimental study of nailed soil slope models: Effects of building foundation and soil characteristics. Applied Sciences (Switzerland), 11(16), 4842. doi:10.3390/app11167735.
[26] Irmawaty, R., Djamaluddin, R., & Akkas, A. M. (2014). Bending Capacity of Styrofoam Filled Concrete (SFC) Using Truss System Reinforcement. In Conference for Civil Engineering Research Networks (CONCERN), Bandung, Indonesia.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.