A Review of Optimization Techniques Application for Building Performance Analysis
Abstract
Doi: 10.28991/CEJ-2022-08-04-014
Full Text: PDF
Keywords
References
Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue, New Mexico, United States.
Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386–392. doi:10.1002/wics.1314.
Dewispelare, A. R. (1984). Vector Optimization Techniques, Technical rept., Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, United States.
Meketon, M. S. (1987). Optimization in simulation: A survey of recent results. Proceedings of the 19th conference on Winter simulation, 58-67. doi:10.1145/318371.318384.
Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: a review, new developments, and applications. Proceedings of the Winter Simulation Conference, December 2005, Orlando, United States. doi:10.1109/WSC.2005.1574242.
Hong, L. J., & Nelson, B. L. (2009). A brief introduction to optimization via simulation. Proceedings - Winter Simulation Conference, 75–85. doi:10.1109/WSC.2009.5429321.
Ammeri, A., Hachicha, W., Chabchoub, H., & Masmoudi, F. (2011). A comprehensive literature review of mono-objective Simulation Optimization method. Advances in Production Engineering & Management, 6(4), 291–302.
Gallier, J., & Quaintance, J. (2018). Fundamentals of linear algebra and optimization. Dept. of Computer and Information Science, University of Pennsylvania. Philadelphia, PA, United States. Available online: https://www.seas.upenn.edu/~cis515/linalg-II.pdf (accessed on February 2022).
Di Somma, M., Yan, B., Bianco, N., Luh, P. B., Graditi, G., Mongibello, L., & Naso, V. (2016). Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer. Applied Thermal Engineering, 101, 752–761. doi:10.1016/j.applthermaleng.2016.02.027.
Ginchev, I., Guerraggio, A., & Rocca, M. (2006). From scalar to vector optimization. Applications of Mathematics, 51(1), 5–36. doi:10.1007/s10492-006-0002-1.
Jin, M., Zhou, X., Zhang, Z. M., & Tentzeris, M. M. (2012). Short-term power load forecasting using grey correlation contest modeling. Expert Systems with Applications, 39(1), 773–779. doi:10.1016/j.eswa.2011.07.072.
Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. doi:10.1016/j.rser.2011.08.014.
Fumo, N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, 31, 53–60. doi:10.1016/j.rser.2013.11.040.
Kang, H. S., Kim, H., Lee, J., Lee, I., Kwak, B. Y., & Im, H. (2015). Optimization of pumping schedule based on water demand forecasting using a combined model of autoregressive integrated moving average and exponential smoothing. Water Science and Technology: Water Supply, 15(1), 188–195. doi:10.2166/ws.2014.104.
Zhou, D., Al-Durra, A., Zhang, K., Ravey, A., & Gao, F. (2019). A robust prognostic indicator for renewable energy technologies: A novel error correction grey prediction model. IEEE Transactions on Industrial Electronics, 66(12), 9312–9325. doi:10.1109/TIE.2019.2893867.
Yu, W., Li, B., Jia, H., Zhang, M., & Wang, D. (2015). Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135–143. doi:10.1016/j.enbuild.2014.11.063.
Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586-3592. doi:10.1016/j.rser.2012.02.049.
Pereira, I., & Madureira, A. (2013). Self-Optimization module for Scheduling using Case-based Reasoning. Applied Soft Computing Journal, 13(3), 1419–1432. doi:10.1016/j.asoc.2012.02.009.
González-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., & Corchado, J. M. (2018). Energy optimization using a case-based reasoning strategy. Sensors, 18(3), 865. doi:10.3390/s18030865.
Faia, R., Pinto, T., Abrishambaf, O., Fernandes, F., Vale, Z., & Corchado, J. M. (2017). Case based reasoning with expert system and swarm intelligence to determine energy reduction in buildings energy management. Energy and Buildings, 155, 269–281. doi:10.1016/j.enbuild.2017.09.020.
Jivani, A. G., Shah, K., Koul, S., & Naik, V. (2016). The Adept K-Nearest Neighbour Algorithm - An optimization to the Conventional K-Nearest Neighbour Algorithm (M. Learn, trans.). Transactions on Machine Learning and Artificial Intelligence, 4(1), 52. doi:10.14738/tmlai.41.1876.
Wang, Q., Li, S., & Li, R. (2018). Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy, 161, 821–831. doi:10.1016/j.energy.2018.07.168.
Zou, Y., Zhan, Q., & Xiang, K. (2021). A comprehensive method for optimizing the design of a regular architectural space to improve building performance. Energy Reports, 7, 981–996. doi:10.1016/j.egyr.2021.01.097.
Rabani, M., Bayera Madessa, H., & Nord, N. (2021). Achieving zero-energy building performance with thermal and visual comfort enhancement through optimization of fenestration, envelope, shading device, and energy supply system. Sustainable Energy Technologies and Assessments, 44, 101020. doi:10.1016/j.seta.2021.101020.
Liu, J., Chen, X., Yang, H., & Li, Y. (2020). Energy storage and management system design optimization for a photovoltaic integrated low-energy building. Energy, 190. doi:10.1016/j.energy.2019.116424.
Williams, K. T., & Gomez, J. D. (2016). Predicting future monthly residential energy consumption using building characteristics and climate data: A statistical learning approach. Energy and Buildings, 128, 1–11. doi:10.1016/j.enbuild.2016.06.076.
White, J. A., & Reichmuth, R. (1996). Simplified method for predicting building energy consumption using average monthly temperatures. IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 3, 1834-1839. IEEE. doi:10.1109/iecec.1996.553381.
Westphal, F. S., & Lamberts, R. (2004). The use of simplified weather data to estimate thermal loads of non-residential buildings. Energy and Buildings, 36(8), 847–854. doi:10.1016/j.enbuild.2004.01.007.
Albatayneh, A. (2021). Optimization of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Reports, 7, 2081-2093. doi:10.1016/j.egyr.2021.04.011.
Ng, L. C., Persily, A. K., & Emmerich, S. J. (2015). IAQ and energy impacts of ventilation strategies and building envelope airtightness in a big box retail building. Building and Environment, 92, 627–634. doi:10.1016/j.buildenv.2015.05.038.
Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2016). An assessment of energy-saving solutions for the envelope design of high-rise buildings in temperate climates: A case study in the Netherlands. Energy and Buildings, 124, 210–221. doi:10.1016/j.enbuild.2015.10.049.
Cao, X., Liu, J., Cao, X., Li, Q., Hu, E., & Fan, F. (2015). Study of the thermal insulation properties of the glass fiber board used for interior building envelope. Energy and Buildings, 107, 49–58. doi:10.1016/j.enbuild.2015.08.007.
Naylor, S., Gillott, M., & Lau, T. (2018). A review of occupant-centric building control strategies to reduce building energy use. Renewable and Sustainable Energy Reviews, 96, 1–10. doi:10.1016/j.rser.2018.07.019.
Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672–681. doi:10.1016/j.enbuild.2018.07.010.
Balvedi, B. F., Ghisi, E., & Lamberts, R. (2018). A review of occupant behaviour in residential buildings. Energy and Buildings, 174, 495–505. doi:10.1016/j.enbuild.2018.06.049.
Wang, Y., & Shao, L. (2017). Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning. Building and Environment, 114, 106–117. doi:10.1016/j.buildenv.2016.12.015.
Yang, J., Santamouris, M., Lee, S. E., & Deb, C. (2016). Energy performance model development and occupancy number identification of institutional buildings. Energy and Buildings, 123, 192–204. doi:10.1016/j.enbuild.2015.12.018.
Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902–924. doi:10.1016/j.rser.2017.02.085.
Lee, S. H., Hong, T., Piette, M. A., & Taylor-Lange, S. C. (2015). Energy retrofit analysis toolkits for commercial buildings: A review. Energy, 89, 1087–1100. doi:10.1016/j.energy.2015.06.112.
Peng, Z., Deng, W., & Hong, Y. (2019). Materials consumption, indoor thermal comfort and associated energy flows of urban residential buildings: Case studies from the cold climate zone of China. International Journal of Building Pathology and Adaptation, 37(5), 579–596. doi:10.1108/IJBPA-01-2019-0007.
Zhou, Y., Zheng, S., Liu, Z., Wen, T., Ding, Z., Yan, J., & Zhang, G. (2020). Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimizations: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 130, 109889. doi:10.1016/j.rser.2020.109889.
Petri, I., Li, H., Rezgui, Y., Yang, C., Yuce, B., & Jayan, B. (2014). A modular optimization model for reducing energy consumption in large scale building facilities. Renewable and Sustainable Energy Reviews, 38, 990–1002. doi:10.1016/j.rser.2014.07.044.
Yang, C., Li, H., Rezgui, Y., Petri, I., Yuce, B., Chen, B., & Jayan, B. (2014). High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76, 92–101. doi:10.1016/j.enbuild.2014.02.053.
Beccali, M., Ciulla, G., Lo Brano, V., Galatioto, A., & Bonomolo, M. (2017). Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy. Energy, 137, 1201–1218. doi:10.1016/j.energy.2017.05.200.
Sghiouri, H., Charai, M., & Mezrhab, A. (2020). Optimization in Building Performance Simulation and Obstacles Facing Its Widespread Use. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2020, 978–1–4673–7863–5. doi:10.1109/IRASET48871.2020.9091993.
Azari, R., Garshasbi, S., Amini, P., Rashed-Ali, H., & Mohammadi, Y. (2016). Multi-objective optimization of building envelope design for life cycle environmental performance. Energy and Buildings, 126, 524–534. doi:10.1016/j.enbuild.2016.05.054.
Bamdad Masouleh, K. (2018). Building energy optimization using machine learning and metaheuristic algorithms, PhD Thesis, Queensland University of Technology, Brisbane, Australia. doi:10.5204/thesis.eprints.120281
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133. doi:10.1007/BF02478259.
Paradarami, T. K., Bastian, N. D., & Wightman, J. L. (2017). A hybrid recommender system using artificial neural networks. Expert Systems with Applications, 83, 300–313. doi:10.1016/j.eswa.2017.04.046.
Jaddi, N. S., Abdullah, S., & Hamdan, A. R. (2015). Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Information Sciences, 294, 628–644. doi:10.1016/j.ins.2014.08.050.
Schenker, B. G. E. (1996). Prediction and control using feedback neural networks and partial models. PhD Thesis, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland. doi:10.3929/ethz-a-001710141.
Karatasou, S., Santamouris, M., & Geros, V. (2006). Modeling and predicting building’s energy use with artificial neural networks: Methods and results. Energy and Buildings, 38(8), 949–958. doi:10.1016/j.enbuild.2005.11.005.
Nasr, G. E., Badr, E. A., & Younes, M. R. (2002). Neural networks in forecasting electrical energy consumption: Univariate and multivariate approaches. International Journal of Energy Research, 26(1), 67–78. doi:10.1002/er.766.
Javeed Nizami, S., & Al-Garni, A. Z. (1995). Forecasting electric energy consumption using neural networks. Energy Policy, 23(12), 1097–1104. doi:10.1016/0301-4215(95)00116-6.
Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438. doi:10.1016/j.ijepes.2014.12.036.
Panapakidis, I. P., & Dagoumas, A. S. (2016). Day-ahead electricity price forecasting via the application of artificial neural network based models. Applied Energy, 172, 132–151. doi:10.1016/j.apenergy.2016.03.089.
Dyvia, H. A., & Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conference Series: Earth and Environmental Science, 622(1), 012019. doi:10.1088/1755-1315/622/1/012019.
Platon, R., Dehkordi, V. R., & Martel, J. (2015). Hourly prediction of a building’s electricity consumption using case-based reasoning, artificial neural networks and principal component analysis. Energy and Buildings, 92, 10–18. doi:10.1016/j.enbuild.2015.01.047.
Çunkaş, M., & Altun, A. A. (2010). Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sources, Part B: Economics, Planning and Policy, 5(3), 279–289. doi:10.1080/15567240802533542.
Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and management, 49(8), 2272-2278. doi:10.1016/j.enconman.2008.01.035.
Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512–517. doi:10.1016/j.energy.2009.10.018.
Rahman, M. M., Shakeri, M., Tiong, S. K., Khatun, F., Amin, N., Pasupuleti, J., & Hasan, M. K. (2021). Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks. Sustainability, 13(4), 2393. doi:10.3390/su13042393.
Neto, A. H., & Fiorelli, F. A. S. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40(12), 2169–2176. doi:10.1016/j.enbuild.2008.06.013.
Li, A., Xiao, F., Zhang, C., & Fan, C. (2021). Attention-based interpretable neural network for building cooling load prediction. Applied Energy, 299, 117238. doi:10.1016/j.apenergy.2021.117238.
García-Gonzalo, E., Fernández-Muñiz, Z., Nieto, P. J. G., Sánchez, A. B., & Fernández, M. M. (2016). Hard-rock stability analysis for span design in entry-type excavations with learning classifiers. Materials, 9(7), 1–19. doi:10.3390/ma9070531.
Vapnik, V. (2000). Statistics for engineering and information science. The Nature of Statistical Learning Theory, Springer, New York, United States. doi:10.1007/978-1-4757-3264-1.
Zhang, F., Deb, C., Lee, S. E., Yang, J., & Shah, K. W. (2016). Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy and Buildings, 126, 94–103. doi:10.1016/j.enbuild.2016.05.028.
Li, M., Wang, W., De, G., Ji, X., & Tan, Z. (2018). Forecasting carbon emissions related to energy consumption in Beijing-Tianjin-Hebei region based on grey prediction theory and extreme learning machine optimized by support vector machine algorithm. Energies, 11(9). doi:10.3390/en11092475.
Zhou, D., Al-Durra, A., Zhang, K., Ravey, A., & Gao, F. (2019). A Robust Prognostic Indicator for Renewable Energy Technologies: A Novel Error Correction Grey Prediction Model. IEEE Transactions on Industrial Electronics, 66(12), 9312–9325. doi:10.1109/tie.2019.2893867.
Ju-Long, D. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288–294. doi:10.1016/S0167-6911(82)80025-X.
Liu, S., & Lin, Y. (2010). Introduction to Grey Systems Theory. Grey Systems, 1–18. doi:10.1007/978-3-642-16158-2_1.
Hu, Y. C. (2017). A genetic-algorithm-based remnant grey prediction model for energy demand forecasting. PLoS One, 12(10), e0185478. doi:10.1371/journal.pone.0185478
Tsai, S. B., Xue, Y., Zhang, J., Chen, Q., Liu, Y., Zhou, J., & Dong, W. (2017). Models for forecasting growth trends in renewable energy. Renewable and Sustainable Energy Reviews, 77, 1169–1178. doi:10.1016/j.rser.2016.06.001.
Pao, H. T., Fu, H. C., & Tseng, C. L. (2012). Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy, 40(1), 400–409. doi:10.1016/j.energy.2012.01.037.
Wang, J., & Hu, J. (2015). A robust combination approach for short-term wind speed forecasting and analysis - Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy, 93, 41–56. doi:10.1016/j.energy.2015.08.045.
Ozturk, S., & Ozturk, F. (2018). Forecasting Energy Consumption of Turkey by Arima Model. Journal of Asian Scientific Research, 8(2), 52–60. doi:10.18488/journal.2.2018.82.52.60.
Zhuang, J., Chen, Y., Shi, X., & Wei, D. (2015). Building cooling load prediction based on time series method and neural networks. International Journal of Grid and Distributed Computing, 8(4), 105–114. doi:10.14257/ijgdc.2015.8.4.10.
Yasmeen, F., & Sharif, M. (2014). Forecasting Electricity Consumption for Pakistan. International Journal of Emerging Technology and Advanced Engineering, 4(4), 496–503.
Wang, Y., Wang, J., Zhao, G., & Dong, Y. (2012). Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China. Energy Policy, 48, 284–294. doi:10.1016/j.enpol.2012.05.026.
Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-criterion optimization with multi colony ant algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1993, 359–372. doi:10.1007/3-540-44719-9_25.
Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer science, 344(2-3), 243-278. doi:10.1016/j.tcs.2005.05.020.
Bamdad, K., Cholette, M. E., Guan, L., & Bell, J. (2017). Ant colony algorithm for building energy optimization problems and comparison with benchmark algorithms. Energy and Buildings, 154, 404–414. doi:10.1016/j.enbuild.2017.08.071.
Yuan, Y., Yuan, J., Du, H., & Li, L. (2012). An improved multi-objective ant colony algorithm for building life cycle energy consumption optimization. International Journal of Computer Applications in Technology, 43(1), 60–66. doi:10.1504/IJCAT.2012.045842.
Sun, Y., Dong, W., & Chen, Y. (2017). An Improved Routing Algorithm Based on Ant Colony Optimization in Wireless Sensor Networks. IEEE Communications Letters, 21(6), 1317–1320. doi:10.1109/LCOMM.2017.2672959.
Blas, N. G., de Mingo López, L. F., Aslanyan, L., & Ryazanov, V. (2011). Self-organizing Routing Algorithm for Wireless Sensors Networks (WSN) using Ant Colony Optimization (ACO) with Tinyos. International Journal on Information Technologies and Knowledge, 5(2), 142–151.
Aamodt, A. & E. Plaza (1994). Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59. doi:10.3233/AIC-1994-7104.
Monfet, D., Corsi, M., Choinière, D., & Arkhipova, E. (2014). Development of an energy prediction tool for commercial buildings using case-based reasoning. Energy and Buildings, 81, 152–160. doi:10.1016/j.enbuild.2014.06.017.
Cover, T. M., & Hart, P. E. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1), 21–27. doi:10.1109/TIT.1967.1053964.
Bhavsar, H., Jivani, A., Bhatt, T., Patel, N., & Shiledarbaxi, N. (2020). Bi-Iterative Optimized K-Nearest Neighbours Algorithm. ICT for Competitive Strategies (pp. 173-184). CRC Press, Boca Raton, United States. doi:10.1201/9781003052098-19.
Kristianto, A. W., Wijaya, F. D., & Tumiran. (2018). Fault location estimation in LCC HVDC transmission lines using k-nearest neighbors. Proceedings - 2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2018, 374–379. doi:10.1109/ICITISEE.2018.8720955.
Haerani, E., Apriyanti, L., & Wardhani, L. K. (2016). Application of unsupervised K Nearest Neighbor (UNN) and Learning Vector Quantization (LVQ) methods in predicting Rupiah to Dollar. Proceedings of 2016 4th International Conference on Cyber and IT Service Management, CITSM 2016, 4–7. doi:10.1109/CITSM.2016.7577579.
Chantakamo, A., & Ketcham, M. (2015). The multi vehicle recognition using hybrid blob analysis and feature-based. Proceedings - 2015 7th International Conference on Information Technology and Electrical Engineering: Envisioning the Trend of Computer, Information and Engineering, ICITEE 2015, 453–457. doi:10.1109/ICITEED.2015.7408989.
Diez, Y., Fort, M., & Sellarès, J. A. (2009). Solving Reverse k-Nearest Queries on Road Networks with the GPU. Actas XIII Encuentros de Geometr’ia Computacional, January, 117–124.
Lachut, D., Banerjee, N., & Rollins, S. (2015). Predictability of energy use in homes. 2014 International Green Computing Conference, IGCC 2014, 1–10,. doi:10.1109/IGCC.2014.7039146.
Reynolds, J., Rezgui, Y., Kwan, A., & Piriou, S. (2018). A zone-level, building energy optimization combining an artificial neural network, a genetic algorithm, and model predictive control. Energy, 151, 729–739. doi:10.1016/j.energy.2018.03.113.
Jung, H. C., Kim, J. S., & Heo, H. (2015). Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach. Energy and Buildings, 90, 76–84. doi:10.1016/j.enbuild.2014.12.029.
Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. (2015). Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy and Buildings, 104, 378–394. doi:10.1016/j.enbuild.2015.06.064.
Eniola, V., Suriwong, T., Sirisamphanwong, C., Ungchittrakool, K., & Fasipe, O. (2021). Validation of Genetic Algorithm Optimized Hidden Markov Model for Short-term Photovoltaic Power Prediction. International Journal of Renewable Energy Research, 11(2), 796–807. doi:10.20508/ijrer.v11i2.11976.g8200.
DOI: 10.28991/CEJ-2022-08-04-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Nurul Asra Abd Rahman, Syahrul Nizam Kamaruzzaman, Farid Wajdi Akashah
This work is licensed under a Creative Commons Attribution 4.0 International License.