Bayesian Confidence Interval for Ratio of the Coefficients of Variation of Normal Distributions: A Practical Approach in Civil Engineering
Downloads
Doi: 10.28991/CEJ-SP2021-07-010
Full Text: PDF
Downloads
[2] Pollution Control Department, (2019). Booklet on Thailand state of pollution 2018. Pollution Control Department, Ministry of Natural Resources and Environment. S. Mongkon Press Limited Partnership, Bangkok, Thailand. Available online: https://www.matchlink.asia/business/page/Thailand/BANGKOK/63791-s-mongkol-press-limited-partnership.html (accessed on January 2022).
[3] Thangjai, W., & Niwitpong, S. (2020). Comparing particulate matter dispersion in Thailand using the Bayesian Confidence Intervals for ratio of coefficients of variation. In Statistics in Transition, 21(5), 41–60. doi:10.21307/STATTRANS-2020-054.
[4] Mallard, A. R., Hollekim-Strand, S. M., Ingul, C. B., & Coombes, J. S. (2020). High day-to-day and diurnal variability of oxidative stress and inflammation biomarkers in people with type 2 diabetes mellitus and healthy individuals. Redox Report, 25(1), 64–69. doi:10.1080/13510002.2020.1795587
[5] Vangel, M. G. (1996). Confidence Intervals for a Normal Coefficient of Variation. The American Statistician, 50(1), 21. doi:10.2307/2685039
[6] Tian, L. (2005). Inferences on the common coefficient of variation. Statistics in Medicine, 24(14), 2213–2220. doi:10.1002/sim.2088.
[7] Mahmoudvand, R., & Hassani, H. (2009). Two new confidence intervals for the coefficient of variation in a normal distribution. Journal of Applied Statistics, 36(4), 429–442. doi:10.1080/02664760802474249.
[8] Panichkitkosolkul, W. (2009). Improved confidence intervals for a coefficient of variation of a normal distribution. Thailand statistician, 7(2), 193-199.
[9] Wongkhao, A., Niwitpong, S. A., & Niwitpong, S. (2015). Confidence intervals for the ratio of two independent coefficients of variation of normal distribution. Far East Journal of Mathematical Sciences, 98(6), 741–757. doi:10.17654/FJMSNov2015_741_757.
[10] Kalkur, T. A., & Rao, A. Bayes estimator for coefficient of variation and inverse coefficient of variation for the normal distribution. International Journal of Statistics and Systems, 12(4), 721–732.
[11] Thangjai, W., Niwitpong, S. A., & Niwitpong, S. (2020). Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Communications in Statistics: Simulation and Computation, 49(1), 194–206. doi:10.1080/03610918.2018.1484138.
[12] Thangjai, W., Niwitpong, S.-A., & Niwitpong, S. (2020). Bayesian Confidence Intervals for Means of Normal Distributions with Unknown Coefficients of Variation. Integrated Uncertainty in Knowledge Modelling and Decision Making, 361–371. doi:10.1007/978-3-030-62509-2_30.
[13] Thangjai, W., Niwitpong, S. A., & Niwitpong, S. (2021). A Bayesian Approach for Estimation of Coefficients of Variation of Normal Distributions. Sains Malaysiana, 50(1), 261–278. doi:10.17576/jsm-2021-5001-25.
[14] Casella G, & Berger R.L. (2002). Statistical inference (2nd Ed.). Duxbury Press, Pacific Grove, United States.
[15] Maneerat, P., Niwitpong, S. A., & Niwitpong, S. (2020). Bayesian confidence intervals for the difference between variances of delta-lognormal distributions. Biometrical Journal, 62(7), 1769–1790. doi:10.1002/bimj.201900079.
[16] Maneerat, P., & Niwitpong, S. A. (2020). Comparing medical care costs using bayesian credible intervals for the ratio of means of delta-lognormal distributions. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 28(Supp01), 51–68. doi:10.1142/S021848852040005X.
[17] Thangjai, W., Niwitpong, S. A., & Niwitpong, S. (2021). Bayesian confidence intervals for coefficients of variation of pm10 dispersion. Emerging Science Journal, 5(2), 139–154. doi:10.28991/esj-2021-01264.
[18] Tian, L., & Wu, J. (2007). Inferences on the common mean of several log-normal populations: The generalized variable approach. Biometrical Journal, 49(6), 944–951. doi:10.1002/bimj.200710391.
[19] Ye, R. D., Ma, T. F., & Wang, S. G. (2010). Inferences on the common mean of several inverse Gaussian populations. Computational Statistics and Data Analysis, 54(4), 906–915. doi:10.1016/j.csda.2009.09.039.
[20] Niwitpong, S., & Wongkhao, A. (2016). Confidence Intervals for the Difference between Inverse of Normal Means. Advances and Applications in Statistics, 48(5), 337–347. doi:10.17654/as048050337
[21] Thangjai, W., Niwitpong, S., & Niwitpong, S. A. (2017). Confidence intervals for mean and difference between means of normal distributions with unknown coefficients of variation. Mathematics, 5(3), 39. doi:10.3390/math5030039.
[22] Thangjai, W., Niwitpong, S.-A., & Niwitpong, S. (2018). Confidence Intervals for Variance and Difference between Variances of One-Parameter Exponential Distributions. Advances and Applications in Statistics, 53(3), 259–283. doi:10.17654/as053030259.
[23] Thangjai, W., & Niwitpong, S.-A. (2019). Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions. Stats, 2(1), 164–173. doi:10.3390/stats2010012.
[24] Donner, A., & Zou, G. Y. (2012). Closed-form confidence intervals for functions of the normal mean and standard deviation. Statistical Methods in Medical Research, 21(4), 347–359. doi:10.1177/0962280210383082.
[25] Niwitpong, S. A. (2015). Confidence intervals for the difference between coefficients of variation of normal distribution with bounded parameters. Far East Journal of Mathematical Sciences, 98(5), 649–663. doi:10.17654/FJMSNov2015_649_663.
[26] Wongkhao, A., Niwitpong, S. A., & Niwitpong, S. (2015). Confidence intervals for the ratio of two independent coefficients of variation of normal distribution. Far East Journal of Mathematical Sciences, 98(6), 741–757. doi:10.17654/FJMSNov2015_741_757.
[27] Thangjai, W., Niwitpong, S., & Niwitpong, S. (2019). Simultaneous confidence intervals for all differences of coefficients of variation of log-normal distributions. Hacettepe Journal of Mathematics and Statistics, 48(5), 1505–1521. doi:10.15672/hujms.454804.
[28] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, & Rubin DB. (2013). Bayesian data analysis (3rd Ed.). Taylor & Francis Group, New York, United States. doi:10.1201/b16018.
[29] Gokhale, D. V., Box, G. E. P., & Tiao, G. C. (1974). Bayesian Inference in Statistical Analysis. International Biometric Society, 30(1), 211. doi:10.2307/2529631
[30] Thangjai, W., Niwitpong, S.-A., & Niwitpong, S. (2022). Analysis of Medical Data Using Interval Estimators for Common Mean of Gaussian Distributions with Unknown Coefficients of Variation. Integrated Uncertainty in Knowledge Modelling and Decision Making, 155–166. doi:10.1007/978-3-030-98018-4_13.
[31] Thangjai, W., Niwitpong, S. A., & Niwitpong, S. (2018). Simultaneous confidence intervals for all differences of means of normal distributions with unknown coefficients of variation. Studies in Computational Intelligence, 753, 670–682. doi:10.1007/978-3-319-70942-0_48.
[32] Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal, 8(3), 454–471. doi:10.28991/cej-2022-08-03-04.
[33] Martin, S. A., & Ritchie, R. J. (2020). Sourcing Thai geography literature for ASEAN and international education. Singapore Journal of Tropical Geography, 41(1), 61–85. doi:10.1111/sjtg.12296.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.