Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer

Ismaël Dabakuyo, Raphael N. N. Mutuku, Richard O. Onchiri

Abstract


This research aims to investigate the mechanical performance of compressed earth blocks (CEBs) stabilized by a combination of metakaolin-based geopolymer (MKG) and sugarcane molasses (SM), to remedy the limitations present in CEBs stabilized with MKG alone. Two schemes of stabilization were used. In the first, the optimum MKG content for stabilizing CEB was partially substituted with various percentages of SM (10% MKG + 0% SM, 8% MKG + 2% SM, 6% MKG + 4% SM, 4% MKG + 6% SM, 2% MKG + 8% SM). The second stabilization scheme consisted of fixing 5% MKG and varying SM from 2% to 8% (5% MKG + 0% SM, 5% MKG + 2% SM, 5% MKG + 4% SM, 5% MKG + 6% SM, 5% MKG + 8% SM). The mechanical properties of the CEBs stabilized with SM and MKG were analyzed in terms of compressive strength, dry density, and water absorption. The test results showed that the combination of MKG and SM for stabilizing CEBs was not as effective as MKG alone in increasing the compressive strength of CEBs. However, this combination solved the high porosity of CEBs stabilized with just MKG by increasing their dry density and decreasing their water absorption capacity. In terms of compressive strength and water absorption, the optimum values were obtained respectively with 5% MKG + 4% SM (4.163 MPa at 28 days) and 6% MKG + 4% SM (8.73% at 28 days). Therefore, the suggested innovative stabilization approach is suitable for improving the overall mechanical properties of CEBs and addressing the shortcomings of CEBs stabilized only with MKG.

 

Doi: 10.28991/CEJ-2022-08-04-012

Full Text: PDF


Keywords


Sugarcane Molasses; Metakaolin-Based Geopolymer; Compressed Earth Block; Compressive Strength; Water Absorption.

References


Niroumand, H., Zain, M. F. M., & Jamil, M. (2013). Various Types of Earth Buildings. Procedia - Social and Behavioral Sciences, 89, 226–230. doi:10.1016/j.sbspro.2013.08.839.

Bahar, R., Benazzoug, M., & Kenai, S. (2004). Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 26(7), 811–820. doi:10.1016/j.cemconcomp.2004.01.003.

Montgomery, D. E. (2002). Dynamically-Compacted cement stabilized soil blocks for low- cost Housing. Phd Thesis, School of Engineering, University of Warwick, Coventry, United Kingdom. Available online: http://212.19.134.34/docs/Bricks/Dynamically-Compacted_Cement_Stabilised_Soil_Blocks_For_Walling_2002.pdf (accessed on January 2022).

Gooding, D., & Thomas, T. (1997). Soilcrete blocks: Experimental work to determine whether cement or compaction pressure is more effective. Building Research and Information, 25(4), 202–209. doi:10.1080/096132197370327.

Millogo, Y., Hajjaji, M., & Ouedraogo, R. (2008). Microstructure and physical properties of lime-clayey adobe bricks. Construction and Building Materials, 22(12), 2386–2392. doi:10.1016/j.conbuildmat.2007.09.002.

El Wardi, F. Z., Ladouy, S., Khabbazi, A., Ibaaz, K., & Khaldoun, A. (2021). Unfired Clay-Cork Granules Bricks Reinforced with Natural Stabilizers: Thermomechanical Characteristics Assessment. Civil Engineering Journal, 7(12), 2068–2082. doi:10.28991/cej-2021-03091778.

Zhang, J., Liu, G., Chen, B., Song, D., Qi, J., & Liu, X. (2014). Analysis of CO2 Emission for the cement manufacturing with alternative raw materials: A LCA-based framework. Energy Procedia, 61, 2541–2545. doi:10.1016/j.egypro.2014.12.041.

Shan, Y., Liu, Z., & Guan, D. (2016). CO2 emissions from China’s lime industry. Applied Energy, 166, 245–252. doi:10.1016/j.apenergy.2015.04.091.

Raphaëlle, P. (2015). Formulation and durability of metakaolin-based geopolymers. PhD Thesis, Civile Engineering, University of Paul Sabatier, Toulouse, France. (In France). Available online: https://tel.archives-ouvertes.fr/tel-01297848/document (accessed on January 2022).

Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. doi:10.1007/s10853-006-0401-4.

Imtiaz, L., Ur Rehman, S. K., Memon, S. A., Khan, M. K., & Javed, M. F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete. Applied Sciences, 10(21), 7838. doi:10.3390/app10217838.

Zhao, J., Tong, L., Li, B., Chen, T., Wang, C., Yang, G., & Zheng, Y. (2021). Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. Journal of Cleaner Production, 307, 127085. doi:10.1016/j.jclepro.2021.127085.

Nazari, A., Bagheri, A., Sanjayan, J. G., Dao, M., Mallawa, C., Zannis, P., & Zumbo, S. (2019). Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Construction and Building Materials, 196, 492–498. doi:10.1016/j.conbuildmat.2018.11.098.

Mucsi, G., & Ambrus, M. (2017). Raw Materials for Geopolymerisation. Proceedings of the MultiScience - XXXI. MicroCAD International Multidisciplinary Scientific Conference, University of Miskolc, Hungary, 20-21 April 2017. doi:10.26649/musci.2017.008.

Carreño-Gallardo, C., Tejeda-Ochoa, A., Perez-Ordonez, O. I., Ledezma-Sillas, J. E., Lardizabal-Gutierrez, D., Prieto-Gomez, C., Valenzuela-Grado, J. A., Robles Hernandez, F. C., & Herrera-Ramirez, J. M. (2018). In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. Journal of Environmental Chemical Engineering, 6(4), 4878–4884. doi:10.1016/j.jece.2018.07.033.

Omar Sore, S., Messan, A., Prud’homme, E., Escadeillas, G., & Tsobnang, F. (2018). Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, 165, 333–345. doi:10.1016/j.conbuildmat.2018.01.051.

Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. doi:10.1016/j.conbuildmat.2013.06.017.

Dukuly, A. A. (2021). Evaluation of Metakaolin-Based Geopolymer as a stabilizing agent for Expansive Soil. Master Thesis, Department of Materials and Science Engineering, African University of Science and technology, Galadima, Nigeria.

Samuel, R. A. (2019). Synthesis of Metakaolin-based Geopolymer and its Performance as Sole Stabilizer of Expansive Soils. PhD Thesis, University of Texas at Arlington, Arlington, United States.

Zhang, M. (2015). Geopolymer, Next Generation Sustainable Cementitious Material−Synthesis, Characterization and Modeling. PhD Thesis, Worcester Polytechnic Institute, Worcester, United States. Available online: https://digital.wpi.edu/downloads/nc580m84s (accessed on January 2022).

Malanda, N., Kimbembe, P. L., & Tamba-Nsemi, Y. D. (2018). Etude des caractéristiques mécaniques d’une brique en terre stabilisée à l’aide de la mélasse de canne à sucre. Sciences Appliquées et de l'Ingénieur, 2(2), 1-9.

Karthik, A., Sudalaimani, K., & Vijayakumar, C. T. (2017). Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceramics International, 43(15), 11935–11943. doi:10.1016/j.ceramint.2017.06.042.

Kamtchueng, B. T., Onana, V. L., Fantong, W. Y., Ueda, A., Ntouala, R. F., Wongolo, M. H., Ndongo, G. B., Ze, A. N., Kamgang, V. K., & Ondoa, J. M. (2015). Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): Implications for road construction. International Journal of Geo-Engineering, 6(1), 1–21. doi:10.1186/s40703-014-0001-0.

Aurelie, T. K. R., Tome, S., Judicaёl, C., Idriss, E., Spieß, A., Fetzer, M. N. A., Elie, K., Janiak, C., & Etoh, M.-A. (2021). Stabilization of Compressed Earth Blocks (CEB) by Pozzolana Based Phosphate Geopolymer: Physico-Mechanical, Structural and Microstructural Investigations. SSRN Electronic Journal, 1–22. doi:10.2139/ssrn.3855724.

M’Ndegwa, J. K., & Shitote, S. M. (2012). Influence of cane molasses on plasticity of expansive clay soil. International Journal of Current Research, 4(1), 136-141.

Riza, F. V., Rahman, I. A., Mujahid, A., & Zaidi, A. (2010). A brief review of Compressed Stabilized Earth Brick (CSEB). CSSR 2010-2010 International Conference on Science and Social Research, 999–1004. doi:10.1109/CSSR.2010.5773936.

WD-ARS 1333 (2018). Compressed stabilized earth blocks-requirements, production and construction. The African Organization for Standardization (ARS), Nairobi, Kenya. Available online: https://www.arso-oran.org/wp-content/uploads/2014/09/WD-ARS-1333-2017-Compressed-stabilized-earth-blocks-Requirements-production-and-construction.pdf (accessed on January 2022).

Ojo, E. B., Isah, A. K., Teixeira, R. S., Matawal, D. S., & Savastano, H. (2018). Geopolymer Stabilisation of Earth Building Materials for Sustainable Construction. NBRRI International Conference: Emerging Materials and Technologies for Sustainable Building and Road Infrastructure, 20-21 June 2018, Abuja, Nigeria, 1–13.

Ranjbar, N., Kuenzel, C., Spangenberg, J., & Mehrali, M. (2020). Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 114(103729). doi:10.1016/j.cemconcomp.2020.103729.

Muguda, S., Lucas, G., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W., & Gallipoli, D. (2020). Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials. Construction and Building Materials, 259, 119725. doi:10.1016/j.conbuildmat.2020.119725.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-04-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Ismael Dabakuyo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message