Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer
Abstract
Doi: 10.28991/CEJ-2022-08-04-012
Full Text: PDF
Keywords
References
Niroumand, H., Zain, M. F. M., & Jamil, M. (2013). Various Types of Earth Buildings. Procedia - Social and Behavioral Sciences, 89, 226–230. doi:10.1016/j.sbspro.2013.08.839.
Bahar, R., Benazzoug, M., & Kenai, S. (2004). Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 26(7), 811–820. doi:10.1016/j.cemconcomp.2004.01.003.
Montgomery, D. E. (2002). Dynamically-Compacted cement stabilized soil blocks for low- cost Housing. Phd Thesis, School of Engineering, University of Warwick, Coventry, United Kingdom. Available online: http://212.19.134.34/docs/Bricks/Dynamically-Compacted_Cement_Stabilised_Soil_Blocks_For_Walling_2002.pdf (accessed on January 2022).
Gooding, D., & Thomas, T. (1997). Soilcrete blocks: Experimental work to determine whether cement or compaction pressure is more effective. Building Research and Information, 25(4), 202–209. doi:10.1080/096132197370327.
Millogo, Y., Hajjaji, M., & Ouedraogo, R. (2008). Microstructure and physical properties of lime-clayey adobe bricks. Construction and Building Materials, 22(12), 2386–2392. doi:10.1016/j.conbuildmat.2007.09.002.
El Wardi, F. Z., Ladouy, S., Khabbazi, A., Ibaaz, K., & Khaldoun, A. (2021). Unfired Clay-Cork Granules Bricks Reinforced with Natural Stabilizers: Thermomechanical Characteristics Assessment. Civil Engineering Journal, 7(12), 2068–2082. doi:10.28991/cej-2021-03091778.
Zhang, J., Liu, G., Chen, B., Song, D., Qi, J., & Liu, X. (2014). Analysis of CO2 Emission for the cement manufacturing with alternative raw materials: A LCA-based framework. Energy Procedia, 61, 2541–2545. doi:10.1016/j.egypro.2014.12.041.
Shan, Y., Liu, Z., & Guan, D. (2016). CO2 emissions from China’s lime industry. Applied Energy, 166, 245–252. doi:10.1016/j.apenergy.2015.04.091.
Raphaëlle, P. (2015). Formulation and durability of metakaolin-based geopolymers. PhD Thesis, Civile Engineering, University of Paul Sabatier, Toulouse, France. (In France). Available online: https://tel.archives-ouvertes.fr/tel-01297848/document (accessed on January 2022).
Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. doi:10.1007/s10853-006-0401-4.
Imtiaz, L., Ur Rehman, S. K., Memon, S. A., Khan, M. K., & Javed, M. F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete. Applied Sciences, 10(21), 7838. doi:10.3390/app10217838.
Zhao, J., Tong, L., Li, B., Chen, T., Wang, C., Yang, G., & Zheng, Y. (2021). Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. Journal of Cleaner Production, 307, 127085. doi:10.1016/j.jclepro.2021.127085.
Nazari, A., Bagheri, A., Sanjayan, J. G., Dao, M., Mallawa, C., Zannis, P., & Zumbo, S. (2019). Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Construction and Building Materials, 196, 492–498. doi:10.1016/j.conbuildmat.2018.11.098.
Mucsi, G., & Ambrus, M. (2017). Raw Materials for Geopolymerisation. Proceedings of the MultiScience - XXXI. MicroCAD International Multidisciplinary Scientific Conference, University of Miskolc, Hungary, 20-21 April 2017. doi:10.26649/musci.2017.008.
Carreño-Gallardo, C., Tejeda-Ochoa, A., Perez-Ordonez, O. I., Ledezma-Sillas, J. E., Lardizabal-Gutierrez, D., Prieto-Gomez, C., Valenzuela-Grado, J. A., Robles Hernandez, F. C., & Herrera-Ramirez, J. M. (2018). In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. Journal of Environmental Chemical Engineering, 6(4), 4878–4884. doi:10.1016/j.jece.2018.07.033.
Omar Sore, S., Messan, A., Prud’homme, E., Escadeillas, G., & Tsobnang, F. (2018). Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, 165, 333–345. doi:10.1016/j.conbuildmat.2018.01.051.
Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. doi:10.1016/j.conbuildmat.2013.06.017.
Dukuly, A. A. (2021). Evaluation of Metakaolin-Based Geopolymer as a stabilizing agent for Expansive Soil. Master Thesis, Department of Materials and Science Engineering, African University of Science and technology, Galadima, Nigeria.
Samuel, R. A. (2019). Synthesis of Metakaolin-based Geopolymer and its Performance as Sole Stabilizer of Expansive Soils. PhD Thesis, University of Texas at Arlington, Arlington, United States.
Zhang, M. (2015). Geopolymer, Next Generation Sustainable Cementitious Material−Synthesis, Characterization and Modeling. PhD Thesis, Worcester Polytechnic Institute, Worcester, United States. Available online: https://digital.wpi.edu/downloads/nc580m84s (accessed on January 2022).
Malanda, N., Kimbembe, P. L., & Tamba-Nsemi, Y. D. (2018). Etude des caractéristiques mécaniques d’une brique en terre stabilisée à l’aide de la mélasse de canne à sucre. Sciences Appliquées et de l'Ingénieur, 2(2), 1-9.
Karthik, A., Sudalaimani, K., & Vijayakumar, C. T. (2017). Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceramics International, 43(15), 11935–11943. doi:10.1016/j.ceramint.2017.06.042.
Kamtchueng, B. T., Onana, V. L., Fantong, W. Y., Ueda, A., Ntouala, R. F., Wongolo, M. H., Ndongo, G. B., Ze, A. N., Kamgang, V. K., & Ondoa, J. M. (2015). Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): Implications for road construction. International Journal of Geo-Engineering, 6(1), 1–21. doi:10.1186/s40703-014-0001-0.
Aurelie, T. K. R., Tome, S., Judicaёl, C., Idriss, E., Spieß, A., Fetzer, M. N. A., Elie, K., Janiak, C., & Etoh, M.-A. (2021). Stabilization of Compressed Earth Blocks (CEB) by Pozzolana Based Phosphate Geopolymer: Physico-Mechanical, Structural and Microstructural Investigations. SSRN Electronic Journal, 1–22. doi:10.2139/ssrn.3855724.
M’Ndegwa, J. K., & Shitote, S. M. (2012). Influence of cane molasses on plasticity of expansive clay soil. International Journal of Current Research, 4(1), 136-141.
Riza, F. V., Rahman, I. A., Mujahid, A., & Zaidi, A. (2010). A brief review of Compressed Stabilized Earth Brick (CSEB). CSSR 2010-2010 International Conference on Science and Social Research, 999–1004. doi:10.1109/CSSR.2010.5773936.
WD-ARS 1333 (2018). Compressed stabilized earth blocks-requirements, production and construction. The African Organization for Standardization (ARS), Nairobi, Kenya. Available online: https://www.arso-oran.org/wp-content/uploads/2014/09/WD-ARS-1333-2017-Compressed-stabilized-earth-blocks-Requirements-production-and-construction.pdf (accessed on January 2022).
Ojo, E. B., Isah, A. K., Teixeira, R. S., Matawal, D. S., & Savastano, H. (2018). Geopolymer Stabilisation of Earth Building Materials for Sustainable Construction. NBRRI International Conference: Emerging Materials and Technologies for Sustainable Building and Road Infrastructure, 20-21 June 2018, Abuja, Nigeria, 1–13.
Ranjbar, N., Kuenzel, C., Spangenberg, J., & Mehrali, M. (2020). Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 114(103729). doi:10.1016/j.cemconcomp.2020.103729.
Muguda, S., Lucas, G., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W., & Gallipoli, D. (2020). Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials. Construction and Building Materials, 259, 119725. doi:10.1016/j.conbuildmat.2020.119725.
DOI: 10.28991/CEJ-2022-08-04-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ismael Dabakuyo
This work is licensed under a Creative Commons Attribution 4.0 International License.