Life Cycle Assessment in Road Pavement Infrastructures: A Review

Bruno Guida Gouveia, Marina Donato, Marcelino Aurélio Vieira da Silva


The need to meet society's demands for road infrastructure while minimizing the resulting environmental impacts is a source of great complications. In this context, Life Cycle Assessment (LCA) can be useful by applying a set of rules and processes for the environmental assessment of projects. The objectives of this study were to present the main environmental impact categories associated with emissions from the life cycle phases of a road pavement and how to estimate them. In addition, this paper provides examples of LCA applications on these infrastructures. In view of the evolution of research on LCA, a compilation was made on: the main categories of environmental impact associated with emissions; phases of life cycle impact assessment; and procedures and methods of impact estimation. The impact categories presented are associated with climate change, acidification, ozone depletion, tropospheric ozone formation, eutrophication, and Particulate Matter Formation. Not all methods are able to generate indicators for all types of impact and, depending on the type of materials and services that make up the inventory of the alternatives analyzed, one specific method may be more appropriate to use. The conclusions are that for each environmental impact, the results depend on the input parameters, such as energy flows and materials, along with their processing by methods of life cycle impact assessment. Besides this, despite the great diversity of the databases for the steps of life cycle assessment of roadway pavement, there is a general consensus about the nature of these steps.


Doi: 10.28991/CEJ-2022-08-06-015

Full Text: PDF


Life Cycle; Infrastructure; Environmental Impact; Transport.


Brundtland, G. H., Khalid, M., Agnelli, S., Al-Athel, S. A., Chidzero, B., Fadika, L. M., Hauf, V, Lang, I, Ma, S., Botero, M. M., Singh, N. (1987). Our common future; by world commission on environment and development. Oxford University Press, Oxford, United Kingdom. (In Portuguese).

ISO-14044. (2006). Environmental Management-Life Cycle Assessment-Requirements and Guidelines. International Organization for Standardization, Geneva, Switzerland.

Harvey, J. T., Meijer, J., & Kendall, A. (2014). Tech Brief: Life Cycle Assessment of Pavement. FHWA-HIF-15-001, Federal Highway Administration (FHWA), Washington, United States. Available online: (accessed on May 2022).

Crawford, R. H. (2008). Validation of a hybrid life-cycle inventory analysis method. Journal of Environmental Management, 88(3), 496–506. doi:10.1016/j.jenvman.2007.03.024.

AzariJafari, H., Yahia, A., & Amor, M. B. (2016). Life cycle assessment of pavements: reviewing research challenges and opportunities. Journal of Cleaner Production, 112, 2187-2197. doi:10.1016/j.jclepro.2015.09.080.

Alshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 75, 1339–1347. doi:10.1016/j.rser.2016.11.122.

Steger, S., & Bleischwitz, R. (2011). Drivers for the use of materials across countries. Journal of Cleaner Production, 19(8), 816–826. doi:10.1016/j.jclepro.2010.08.016.

Khare, P., Machesky, J., Soto, R., He, M., Presto, A. A., & Gentner, D. R. (2020). Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Science Advances, 6(36). doi:10.1126/sciadv.abb9785.

Tokede, O. O., Whittaker, A., Mankaa, R., & Traverso, M. (2020). Life cycle assessment of asphalt variants in infrastructures: The case of lignin in Australian road pavements. Structures, 25, 190–199. doi:10.1016/j.istruc.2020.02.026.

Plati, C. (2019). Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Construction and Building Materials, 211, 539–555. doi:10.1016/j.conbuildmat.2019.03.242.

National Transport Confederation (2021). Pesquisa CNT de rodovias (2021). CNT survey of highways (2021). National Transport Confederation (CNT, SEST, & SENAT, Eds), Brazil, v.1, 1-234.

He, M., Tu, C., Cao, D. W., & Chen, Y. J. (2019). Comparative analysis of bio-binder properties derived from different sources. International Journal of Pavement Engineering, 20(7), 792–800. doi:10.1080/10298436.2017.1347434.

Chen, X., Wang, H., Horton, R., & DeFlorio, J. (2021). Life-cycle assessment of climate change impact on time-dependent carbon-footprint of asphalt pavement. Transportation Research Part D: Transport and Environment, 91. doi:10.1016/j.trd.2021.102697.

Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6). doi:10.1088/1748-9326/aabd42.

Li, J., Xiao, F., Zhang, L., & Amirkhanian, S. N. (2019). Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. Journal of Cleaner Production, 233, 1182–1206. doi:10.1016/j.jclepro.2019.06.061.

Hasan, U., Whyte, A., & Al Jassmi, H. (2019). Critical review and methodological issues in integrated life-cycle analysis on road networks. Journal of Cleaner Production, 206, 541–558. doi:10.1016/j.jclepro.2018.09.148.

Zulu, K., Singh, R. P., & Shaba, F. A. (2020). Environmental and economic analysis of selected pavement preservation treatments. Civil Engineering Journal, 6(2), 210-224. doi:10.28991/cej-2020-03091465.

Zheng, X., Easa, S. M., Yang, Z., Ji, T., & Jiang, Z. (2019). Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, 213, 659–672. doi:10.1016/j.jclepro.2018.12.227.

Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2017). Life Cycle Assessment: Theory and Practice. Springer, Cham, Switzerland. doi:10.1007/978-3-319-56475-3.

Crawford, R. (2011). Life cycle assessment in the built environment (1st Ed.). Routledge, London, United Kingdom. doi:10.4324/9780203868171.

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. Available online: (accessed on May 2022).

van Zelm, R., Preiss, P., van Goethem, T., Van Dingenen, R., & Huijbregts, M. (2016). Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmospheric Environment, 134, 129–137. doi:10.1016/j.atmosenv.2016.03.044.

Roy, P. O., Azevedo, L. B., Margni, M., van Zelm, R., Deschênes, L., & Huijbregts, M. A. J. (2014). Characterization factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and uncertainty. Science of the Total Environment, 500–501, 270–276. doi:10.1016/j.scitotenv.2014.08.099.

Helmes, R. J. K., Huijbregts, M. A. J., Henderson, A. D., & Jolliet, O. (2012). Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. International Journal of Life Cycle Assessment, 17(5), 646–654. doi:10.1007/s11367-012-0382-2.

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. doi:10.1007/s11367-016-1246-y.

Santos, J., Bressi, S., Cerezo, V., & Lo Presti, D. (2019). SUP&R DSS: A sustainability-based decision support system for road pavements. Journal of Cleaner Production, 206, 524–540. doi:10.1016/j.jclepro.2018.08.308.

Martinez-Arguelles, G., Acosta, M. P., Dugarte, M., & Fuentes, L. (2019). Life Cycle Assessment of Natural and Recycled Concrete Aggregate Production for Road Pavements Applications in the Northern Region of Colombia: Case Study. Transportation Research Record, 2673(5), 397–406. doi:10.1177/0361198119839955.

Vega A, D. L., Santos, J., & Martinez-Arguelles, G. (2022). Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction. International Journal of Pavement Engineering, 23(4), 923–936. doi:10.1080/10298436.2020.1778694.

Bare, J. C. (2002). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of industrial ecology, 6(3‐4), 49-78. doi:10.1162/108819802766269539.

Goedkoop, M., Hofstetter, P., Müller-Wenk, R., & Spriemsma, R. (1998). The Eco-indicator 98 explained. The International Journal of Life Cycle Assessment, 3(6), 352-360. doi: 10.1007/BF02979347.

Goedkoop, M., & Spriensma, R. (2001). The Eco-indicator 99 - A damage oriented method for Life Cycle Impact Assessment-Methodology Annex (3rd Ed.). Pré Consultants B. V., Amersfoort, Netherlands.

Hoang, T., Jullien, A., Ventura, A., & Crozet, Y. (2005). A global methodology for sustainable road-Application to the environmental assessment of French highway. 10DBMC International Conference on Durability of Building Materials and Components, 17-20 April, 2005, Lyon, France.

Guinée, J. B. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5). doi:10.1007/BF02978897.

Van Caneghem, J., Block, C., & Vandecasteele, C. (2010). Assessment of the impact on human health of industrial emissions to air: Does the result depend on the applied method? Journal of Hazardous Materials, 184(1–3), 788–797. doi:10.1016/j.jhazmat.2010.08.110.

Stek, E., DeLong, D., McDonnell, T., & Rodriguez, J. (2011). Life Cycle Assessment Using ATHENA Impact Estimator for Buildings: A Case Study. Structures Congress 2011. doi.:10.1061/41171(401)42.

Horvath, A. (2004). A life-cycle analysis model and decision-support tool for selecting recycled versus virgin materials for highway applications. Final Report for RMRC Research Project No. 23, University of California, Berkeley, United States.

Muench, S. T. (2010). Roadway Construction Sustainability Impacts. Transportation Research Record: Journal of the Transportation Research Board, 2151(1), 36–45. doi:10.3141/2151-05.

Birgisdóttir, H. (2005). Life cycle assessment model for road construction and use of residues from waste incineration. Ph.D. Thesis, Institute of Environment & Resources, Technical University of Denmark, Lyngby, Denmark.

Birgisdottir, H., Bhander, G., Hauschild, M. Z., & Christensen, T. H. (2007). Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Management, 27(8), S75-S84. doi:10.1016/J.wasman.2007.02.016.

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., & Zelm, R. V. (2009). ReCiPe2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ministry of Housing, Spatial Planning and Environment (VROM), Barendrecht, Netherlands.

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., & Zelm, R. Van. (2013). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (version 1.08, May 2013). Ministry of Housing, Spatial Planning and Environment (VROM), Barendrecht, Netherlands.

Huijbregts, M.A.J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., R. van Zelm, (2016). Recipe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: characterization”. RIVM Report 2016–0104. National Institute for Human Health and the Environment, Bilthoven, Netherlands.

Jullien, A., Dauvergne, M., & Proust, C. (2015). Road LCA: the dedicated ECORCE tool and database. International Journal of Life Cycle Assessment, 20(5), 655–670. doi:10.1007/s11367-015-0858-y.

Huang, Y., Hakim, B., & Zammataro, S. (2013). Measuring the carbon footprint of road construction using Changer. International Journal of Pavement Engineering, 14(6), 590–600. doi:10.1080/10298436.2012.693180.

Muench, S. T., Lin, Y. Y., Katara, S., & Armstrong, A. (2014). Roadprint: Practical Pavement Life Cycle Assessment (LCA) Using Generally Available Data. 2014 International Symposium on Pavement Life Cycle Assessment, 249-262, October 14-16, 2014, davis, United States.

Nicuta, A. M. (2011). Life cycle assessment study for new and recycled asphalt pavements. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 57(2), 81.

Mukherjee, A., & Cass, D. (2012). Project emissions estimator: implementation of a project-based framework for monitoring the greenhouse gas emissions of pavement. Transportation research record, 2282(1), 91-99. doi:10.3141/2282-10.

Mukherjee, A., Stawowy, B., & Cass, D. (2013). Project Emission Estimator: tool for contractors and agencies for assessing greenhouse gas Emissions of Highway construction Projects. Transportation research record, 2366(1), 3-12. doi:10.3141/2366-01.

Evangelista, L., & De Brito, J. (2008). Environmental life cycle assessment of concrete made with fine recycled concrete aggregates. Portugal Sb07—Sustainable Construction, Materials and Practices: Challenge of the Industry for the New Millennium, 1-7.

Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. International Journal of Life Cycle Assessment, 8(6), 324–330. doi:10.1007/BF02978505.

Humbert, S., De Schryver, A., Bengoa, X., Margni, M., & Jolliet, O. (2012). IMPACT 2002+: user guide. Draft for version Q, 2. Quantis-Environmental Sustainability Consultancy, Zurich, Switzerland.

Chong, D., & Wang, Y. (2017). Impacts of flexible pavement design and management decisions on life cycle energy consumption and carbon footprint. International Journal of Life Cycle Assessment, 22(6), 952–971. doi:10.1007/s11367-016-1202-x.

Dos Santos, J. M. O., Thyagarajan, S., Keijzer, E., Flores, R. F., & Flintsch, G. (2017). Comparison of life-cycle assessment tools for road pavement infrastructure. Transportation Research Record, 2646(1), 28–38. doi:10.3141/2646-04.

Hoxha, E., Vignisdottir, H. R., Barbieri, D. M., Wang, F., Bohne, R. A., Kristensen, T., & Passer, A. (2021). Life cycle assessment of roads: Exploring research trends and harmonization challenges. Science of the Total Environment, 759, 143506. doi:10.1016/j.scitotenv.2020.143506.

Chong, D., Wang, Y., Dai, Z., Chen, X., Wang, D., & Oeser, M. (2018). Multiobjective optimization of asphalt pavement design and maintenance decisions based on sustainability principles and mechanistic-empirical pavement analysis. International Journal of Sustainable Transportation, 12(6), 461–472. doi:10.1080/15568318.2017.1392657.

Cong, L., Guo, G., Yu, M., Yang, F., & Tan, L. (2020). The energy consumption and emission of polyurethane pavement construction based on life cycle assessment. Journal of Cleaner Production, 256. doi:10.1016/j.jclepro.2020.120395.

Santos, J., Ferreira, A., & Flintsch, G. (2015). A life cycle assessment model for pavement management: Methodology and computational framework. International Journal of Pavement Engineering, 16(3), 268–286. doi:10.1080/10298436.2014.942861.

Liljenström, C., Björklund, A., & Toller, S. (2022). Including maintenance in life cycle assessment of road and rail infrastructure—a literature review. International Journal of Life Cycle Assessment, 27(2), 316–341. doi:10.1007/s11367-021-02012-x.

Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283–296. doi:10.1016/j.jclepro.2008.06.005.

Yu, B., & Lu, Q. (2012). Life cycle assessment of pavement: Methodology and case study. Transportation Research Part D: Transport and Environment, 17(5), 380–388. doi:10.1016/j.trd.2012.03.004.

Yu, B., Lu, Q., & Xu, J. (2013). An improved pavement maintenance optimization methodology: Integrating LCA and LCCA. Transportation Research Part A: Policy and Practice, 55, 1–11. doi:10.1016/j.tra.2013.07.004.

Chou, C. P., & Lee, N. (2013). A sensitivity study of RAP cost and performance on its life cycle benefits. Advanced Materials Research, 723, 567–574. doi:10.4028/

Yu, B., & Lu, Q. (2014). Estimation of albedo effect in pavement life cycle assessment. Journal of Cleaner Production, 64, 306–309. doi:10.1016/j.jclepro.2013.07.034.

Araújo, J. P. C., Oliveira, J. R. M., & Silva, H. M. R. D. (2014). The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transportation Research Part D: Transport and Environment, 32, 97–110. doi:10.1016/j.trd.2014.07.006.

Santos, J., Bryce, J., Flintsch, G., Ferreira, A., & Diefenderfer, B. (2015). A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices. Structure and Infrastructure Engineering, 11(9), 1199–1217. doi:10.1080/15732479.2014.945095.

Liu, R., Smartz, B. W., & Descheneaux, B. (2015). LCCA and environmental LCA for highway pavement selection in Colorado. International Journal of Sustainable Engineering, 8(2), 102–110. doi:10.1080/19397038.2014.958602.

Mauro, R., & Guerrieri, M. (2016). Comparative life-cycle assessment of conventional (double lane) and non-conventional (turbo and flower) roundabout intersections. Transportation Research Part D: Transport and Environment, 48, 96–111. doi:10.1016/j.trd.2016.08.011.

Chen, F., Zhu, H., Yu, B., & Wang, H. (2016). Environmental burdens of regular and long-term pavement designs: A life cycle view. International Journal of Pavement Engineering, 17(4), 300–313. doi:10.1080/10298436.2014.993189.

Santos, J., Flintsch, G., & Ferreira, A. (2017). Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resources, Conservation and Recycling, 116, 15–31. doi:10.1016/j.resconrec.2016.08.025.

Moretti, L., Mandrone, V., D’Andrea, A., & Caro, S. (2017). Comparative “from cradle to gate” life cycle assessments of Hot Mix Asphalt (HMA) materials. Sustainability, 9(3), 400. doi:10.3390/su9030400.

Liu, X., Cui, Q., & Schwartz, C. W. (2018). Introduction of mechanistic-empirical pavement design into pavement carbon footprint analysis. International Journal of Pavement Engineering, 19(9), 763–771. doi:10.1080/10298436.2016.1205748.

Hong, F., & Prozzi, J. A. (2018). Evaluation of recycled asphalt pavement using economic, environmental, and energy metrics based on long-term pavement performance sections. Road Materials and Pavement Design, 19(8), 1816–1831. doi:10.1080/14680629.2017.1348306.

Gulotta, T. M., Mistretta, M., & Praticò, F. G. (2019). A life cycle scenario analysis of different pavement technologies for urban roads. Science of the Total Environment, 673, 585–593. doi:10.1016/j.scitotenv.2019.04.046.

Wang, H., Al-Saadi, I., Lu, P., & Jasim, A. (2020). Quantifying greenhouse gas emission of asphalt pavement preservation at construction and use stages using life-cycle assessment. International Journal of Sustainable Transportation, 14(1), 25–34. doi:10.1080/15568318.2018.1519086.

Huang, M., Dong, Q., Ni, F., & Wang, L. (2021). LCA and LCCA based multi-objective optimization of pavement maintenance. Journal of Cleaner Production, 283. doi:10.1016/j.jclepro.2020.124583.

Nascimento, F., Gouveia, B., Dias, F., Ribeiro, F., & Silva, M. A. (2020). A method to select a road pavement structure with life cycle assessment. Journal of Cleaner Production, 271. doi:10.1016/j.jclepro.2020.122210.

Shi, X., Mukhopadhyay, A., Zollinger, D., & Grasley, Z. (2019). Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate. Journal of Cleaner Production, 225, 414–425. doi:10.1016/j.jclepro.2019.03.288.

Rosado, L. P., Vitale, P., Penteado, C. S. G., & Arena, U. (2017). Life cycle assessment of natural and mixed recycled aggregate production in Brazil. Journal of Cleaner Production, 151, 634–642. doi:10.1016/j.jclepro.2017.03.068.

Braga, A. M., Silvestre, J. D., & de Brito, J. (2017). Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 162, 529–543. doi:10.1016/j.jclepro.2017.06.057.

Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2016). Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 109, 67–77. doi:10.1016/j.resconrec.2016.02.009.

Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. doi:10.1080/19648189.2016.1197161.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-015


  • There are currently no refbacks.

Copyright (c) 2022 Bruno Guida Gouveia, Marina Donato, Marcelino Aurélio Vieira da Silva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.