Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash
Abstract
Doi: 10.28991/CEJ-2022-08-06-010
Full Text: PDF
Keywords
References
Jahanzaib Khalil, M., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete – A review. Construction and Building Materials, 270, 1-14. doi:10.1016/j.conbuildmat.2020.121371.
Bheel, N., Sohu, S., Jhatial, A. A., Memon, N. A., & Kumar, A. (2022). Combined effect of coconut shell and sugarcane bagasse ashes on the workability, mechanical properties and embodied carbon of concrete. Environmental Science and Pollution Research, 29(4), 5207–5223. doi:10.1007/s11356-021-16034-3.
Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., & Zajdel, P. (2021). Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00698.
Chindaprasirt, P., Kroehong, W., Damrongwiriyanupap, N., Suriyo, W., & Jaturapitakkul, C. (2020). Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. Journal of Building Engineering, 31. doi:10.1016/j.jobe.2020.101415.
Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. doi:10.1016/j.conbuildmat.2018.05.037.
Onikeku, O., Shitote, S. M., Mwero, J., Adedeji, A. A., & Kanali, C. (2019). Compressive Strength and Slump Prediction of Two Blended Agro Waste Materials Concretes. The Open Civil Engineering Journal, 13(1), 118–128. doi:10.2174/1874149501913010118.
Fairbairn, E. M. R., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D., & Silvoso, M. M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91(9), 1864–1871. doi:10.1016/j.jenvman.2010.04.008.
Hussein, A. A. E., Shafiq, N., Nuruddin, M. F., & Memon, F. A. (2014). Compressive strength and microstructure of sugar cane bagasse ash concrete. Research Journal of Applied Sciences, Engineering and Technology, 7(12), 2569–2577. doi:10.19026/rjaset.7.569.
Le, D. H., & Sheen, Y. N. (2022). Assessment of properties of mortars modified with sugarcane bagasse ash processed by heating at different temperatures as cement replacement. European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2022.2047794.
Mali, A. K., & Nanthagopalan, P. (2021). Comminution: A Supplementation for Pozzolanic Adaptation of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 33(12), 4021343. doi:10.1061/(asce)mt.1943-5533.0003985.
Joshaghani, A., & Moeini, M. A. (2018). Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar. Journal of Materials in Civil Engineering, 30(7), 4018144. doi:10.1061/(asce)mt.1943-5533.0002317.
Andrade Neto, J. da S., de França, M. J. S., Amorim Júnior, N. S. de, & Ribeiro, D. V. (2021). Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Construction and Building Materials, 266. doi:10.1016/j.conbuildmat.2020.120959.
Xu, Q., Ji, T., Gao, S. J., Yang, Z., & Wu, N. (2018). Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials, 12(1). doi:10.3390/ma12010039.
Dineshkumar, R., & Balamurugan, P. (2021). Behavior of high-strength concrete with sugarcane bagasse ash as replacement for cement. Innovative Infrastructure Solutions, 6(2). doi:10.1007/s41062-020-00450-4.
Uzbas, B., & Aydin, A. C. (2020). Microstructural Analysis of Silica Fume Concrete with Scanning Electron Microscopy and X-Ray Diffraction. Engineering, Technology & Applied Science Research, 10(3), 5845–5850. doi:10.48084/etasr.3288.
Kazmi, S. M. S., Munir, M. J., Patnaikuni, I., & Wu, Y. F. (2017). Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction. Construction and Building Materials, 148, 231–240. doi:10.1016/j.conbuildmat.2017.05.025.
Landa-Ruiz, L., Landa-Gómez, A., Mendoza-Rangel, J. M., Landa-Sánchez, A., Ariza-Figueroa, H., Méndez-Ramírez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V. M., Croche, R., & Baltazar-Zamora, M. A. (2021). Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. In Crystals (Vol. 11, Issue 9). doi:10.3390/cryst11091012.
Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30–35. doi:10.1016/j.resconrec.2011.09.016.
Gupta, A., Gupta, N., & Saxena, K. K. (2021). Mechanical and durability characteristics assessment of geopolymer composite (Gpc) at varying silica fume content. Journal of Composites Science, 5(9). doi:10.3390/JCS5090237.
Wagh, M., & Waghe, U. P. (2022). Development of self-compacting concrete blended with sugarcane bagasse ash. Materials Today: Proceedings, 60, 1787–1792. doi:10.1016/j.matpr.2021.12.459.
Berenguer, R., Lima, N., Valdés, A. C., Medeiros, M. H. F., Lima, N. B. D., Delgado, J. M. P. Q., Silva, F. A. N., Azevedo, A. C., Guimarães, A. S., & Rangel, B. (2020). Durability of Concrete Structures with Sugar Cane Bagasse Ash. Advances in Materials Science and Engineering. doi:10.1155/2020/6907834.
Cordeiro, G. C., Andreão, P. V., & Tavares, L. M. (2019). Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon, 5(10). doi:10.1016/j.heliyon.2019.e02566.
Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and mechanical properties of pavement concrete containing bagasse ash. Materials Today: Proceedings, 17, 1612–1626. doi:10.1016/j.matpr.2019.06.191.
Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. doi:10.1016/j.matpr.2020.09.751.
Sua-Iam, G., & Makul, N. (2013). Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production, 57, 308–319. doi:10.1016/j.jclepro.2013.06.009.
Abdulhussein, F. K., Jawad, Z. F., Frayah, Q. J., & Salman, A. J. (2021). Investigation of the Effect of Addition Nano-papyrus Cane on the Mechanical Properties of Concrete. Civil Engineering Journal, 7(02), 226-235. doi:10.28991/cej-2021-03091649.
Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials and Design, 34, 45–50. doi:10.1016/j.matdes.2011.07.045.
Shafiq, N., Elhameed, A. A., & Nuruddin, M. F. (2014). Durability of sugar cane bagasse ash (SCBA) concrete towards chloride ion penetration. Applied Mechanics and Materials, 567, 369–374. doi:10.4028/www.scientific.net/AMM.567.369.
Vaitkevičius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra-high performance concrete. Construction and Building Materials, 68, 102–109. doi:10.1016/j.conbuildmat.2014.05.101.
Koteng, D. O., & Chen, C. T. (2015). Strength development of lime-pozzolana pastes with silica fume and fly ash. Construction and Building Materials, 84, 294–300. doi:10.1016/j.conbuildmat.2015.03.052.
Nikhade, A., & Nag, A. (2022). Effective utilization of sugarcane bagasse Ash, rice husk Ash& Metakaolin in concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2022.04.422.
Le, D. H., Sheen, Y. N., & Nguyen, K. H. (2022). Enhancing compressive strength and durability of self-compacting concrete modified with controlled-burnt sugarcane bagasse ash-blended cements. Frontiers of Structural and Civil Engineering, 16(2), 161–174. doi:10.1007/s11709-021-0796-7.
Shah, M. I., Javed, M. F., Aslam, F., & Alabduljabbar, H. (2022). Machine learning modeling integrating experimental analysis for predicting the properties of sugarcane bagasse ash concrete. Construction and Building Materials, 314. doi:10.1016/j.conbuildmat.2021.125634.
Ahmad, A., Rehman, K. U., Ahmad, F., Ahmad, A., & Siffat, M. A. (2021). Effect of Calcination on the Chemical and Microstructural Properties of Sugarcane Bagasse Ash (SCBA). Journal of Engineering Research and Reports, 1–9. doi:10.9734/jerr/2021/v21i817482.
Rajasekar, A., Arunachalam, K., Kottaisamy, M., & Saraswathy, V. (2018). Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, 171, 350–356. doi:10.1016/j.conbuildmat.2018.03.140.
Mangi, S. A., Jamaluddin, N., Wan Ibrahim, M. H., Abdullah, A. H., Abdul Awal, A. S. M., Sohu, S., & Ali, N. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conference Series: Materials Science and Engineering, 271(1). doi:10.1088/1757-899X/271/1/012001.
Amin, M. N., Ashraf, M., Kumar, R., Khan, K., Saqib, D., Ali, S. S., & Khan, S. (2020). Role of Sugarcane Bagasse Ash in Developing Sustainable Engineered Cementitious Composites. Frontiers in Materials, 7. doi:10.3389/fmats.2020.00065.
Quedou, P. G., Wirquin, E., & Bokhoree, C. (2021). Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00545.
Jagadesh, P., Ramachandra Murthy, A., & Murugesan, R. (2020). Effect of processed sugar cane bagasse ash on mechanical and fracture properties of blended mortar. Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120846.
Farrant, W. E., Babafemi, A. J., Kolawole, J. T., & Panda, B. (2022). Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete. Materials, 15(9), 3018. doi:10.3390/ma15093018.
Wu, N., Ji, T., Huang, P., Fu, T., Zheng, X., & Xu, Q. (2022). Use of sugar cane bagasse ash in ultra-high performance concrete (UHPC) as cement replacement. Construction and Building Materials, 317. doi:10.1016/j.conbuildmat.2021.125881.
Akram, T., Memon, S. A., & Obaid, H. (2009). Production of low cost self-compacting concrete using bagasse ash. Construction and Building Materials, 23(2), 703–712. doi:10.1016/j.conbuildmat.2008.02.012.
Amin, M. N., Ahmad, A., Shahzada, K., Khan, K., Jalal, F. E., & Qadir, M. G. (2022). Mechanical and microstructural performance of concrete containing high-volume of bagasse ash and silica fume. Scientific Reports, 12(1). doi:10.1038/s41598-022-08749-1.
Shafiq, N., Hussein, A. A. E., Nuruddin, M. F., & Al Mattarneh, H. (2018). Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(3), 123–132. doi:10.1680/jensu.15.00014.
DOI: 10.28991/CEJ-2022-08-06-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Tareg Abdalla Abdalla Abdalla
This work is licensed under a Creative Commons Attribution 4.0 International License.