Shear Strengthening of Reinforced Concrete Beam Using Wire Mesh–Epoxy Composite

Mustafa Al-Bazoon, Abdulkhaliq Jaafer, Haidar Haidar, Abbas Dawood

Abstract


This experimental research aims to study the use of wire mesh–epoxy composite (WMEC) as a shear-strengthening technique for reinforced concrete (RC) beams by focusing on the following parameters: (1) presence of shear reinforcement in the shear span; (2) type of strengthening technique (U-jacketing, vertical U strip, or inclined strip); and (3) number of wire mesh layers (three or six layers). Nine simply supported rectangular RC beams were tested under two monotonic point loads. The testing specimens were divided into two groups: (1) five beams without shear reinforcement and (2) four beams with shear reinforcement. Load–deflection relationship, shear ductility index, beams’ stiffness, energy absorption, crack propagation, mode of failure, and strain were studied for all testing specimens and compared with those of the control beams to measure the improvement from WMEC addition. Results showed that all WMEC types enhanced the shear capacity. Among the three shear-strengthening types, the continuous U-jacket scheme had a higher effect, increasing the shear capacity between 33.4 and 95.9% and the shear ductility index by 23% relative to those of the reference specimens. The shear capacity improvement by WMEC for the beams without shear steel reinforcement was greater than that for the beams with shear reinforcement under the same shear-strengthening configuration. When the number of wire mesh layers was doubled, the ultimate load was further increased from 33.4 to 57.8%. This research showed that WMEC is a practical and excellent shear-strengthening technique for RC beams.

 

Doi: 10.28991/CEJ-2022-08-06-09

Full Text: PDF


Keywords


Shear Strengthening; Epoxy; Wire Mesh; RC Beam; Ferrocement; Jacketing.

References


Thanoon, W. A., Jaafar, M. S., Kadir, M. R. A., & Noorzaei, J. (2005). Repair and structural performance of initially cracked reinforced concrete slabs. Construction and Building Materials, 19(8), 595–603. doi:10.1016/j.conbuildmat.2005.01.011.

Barnes, R. A., Baglin, P. S., Mays, G. C., & Subedi, N. K. (2001). External steel plate system for the shear strengthening of reinforced concrete beams. Engineering Structures, 23(9), 1162–1176. doi:10.1016/S0141-0296(00)00124-3.

Adhikary, B. B., Mutsuyoshi, H., & Sano, M. (2000). Shear strengthening of reinforced concrete beams using steel plates bonded on beam web: Experiments and analysis. Construction and Building Materials, 14(5), 237–244. doi:10.1016/S0950-0618(00)00023-4.

Abdalla, J. A., Abu-Obeidah, A. S., Hawileh, R. A., & Rasheed, H. A. (2016). Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study. Construction and Building Materials, 128, 24–37. doi:10.1016/j.conbuildmat.2016.10.071.

Li, W., & Leung, C. K. Y. (2017). Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips. Composite Structures, 177, 141–157. doi:10.1016/j.compstruct.2017.06.059.

Oller, E., Pujol, M., & Marí, A. (2019). Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams. Composites Part B: Engineering, 164, 235–248. doi:10.1016/j.compositesb.2018.11.065.

Lee, D. H., Han, S. J., Kim, K. S., & LaFave, J. M. (2017). Shear strength of reinforced concrete beams strengthened in shear using externally-bonded FRP composites. Composite Structures, 173, 177–187. doi:10.1016/j.compstruct.2017.04.025.

Baghi, H., Barros, J. A. O., & Rezazadeh, M. (2017). Shear strengthening of damaged reinforced concrete beams with Hybrid Composite Plates. Composite Structures, 178, 353–371. doi:10.1016/j.compstruct.2017.07.039.

Baghi, H., Barros, J. A. O., & Menkulasi, F. (2016). Shear strengthening of reinforced concrete beams with Hybrid Composite Plates (HCP) technique: Experimental research and analytical model. Engineering Structures, 125, 504–520. doi:10.1016/j.engstruct.2016.07.023.

Lourenço, L., Zamanzadeh, Z., Barros, J. A. O., & Rezazadeh, M. (2018). Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 194, 112–126. doi:10.1016/j.jclepro.2018.05.096.

Alam, M. A., & Al Riyami, K. (2018). Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Construction and Building Materials, 162, 683–696. doi:10.1016/j.conbuildmat.2017.12.011.

Shomali, A., Mostofinejad, D., & Esfahani, M. R. (2020). Effective strain of CFRP in RC beams strengthened in shear with NSM reinforcements. Structures, 23, 635–645. doi:10.1016/j.istruc.2019.10.020.

Jalali, M., Sharbatdar, M. K., Chen, J. F., & Jandaghi Alaee, F. (2012). Shear strengthening of RC beams using innovative manually made NSM FRP bars. Construction and Building Materials, 36, 990–1000. doi:10.1016/j.conbuildmat.2012.06.068.

Shomali, A., Mostofinejad, D., & Esfahani, M. R. (2021). Shear strengthening of RC beams using EBRIG CFRP strips: a comparative study. European Journal of Environmental and Civil Engineering, 25(14), 2540–2556. doi:10.1080/19648189.2019.1633413.

Lu, X. Z., Teng, J. G., Ye, L. P., & Jiang, J. J. (2005). Bond-slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 27(6), 920–937. doi:10.1016/j.engstruct.2005.01.014.

Ceroni, F., Pecce, M., Bilotta, A., & Nigro, E. (2012). Bond behavior of FRP NSM systems in concrete elements. Composites Part B: Engineering, 43(2), 99–109. doi:10.1016/j.compositesb.2011.10.017.

Alwash, D., Kalfat, R., Al-Mahaidi, R., & Du, H. (2021). Shear strengthening of RC beams using NSM CFRP bonded using cement-based adhesive. Construction and Building Materials, 301, 124365. doi:10.1016/j.conbuildmat.2021.124365.

Al-Rousan, R. Z., & Shannag, M. J. (2018). Shear Repairing and Strengthening of Reinforced Concrete Beams Using SIFCON. Structures, 14, 389–399. doi:10.1016/j.istruc.2018.05.001.

Meda, A., Mostosi, S., & Riva, P. (2014). Shear strengthening of reinforced concrete beam with high-performance fiber-reinforced cementitious composite jacketing. ACI Structural Journal, 111(5), 1059–1068. doi:10.14359/51686807.

Younis, A., Ebead, U., & Shrestha, K. C. (2017). Different FRCM systems for shear-strengthening of reinforced concrete beams. Construction and Building Materials, 153, 514–526. doi:10.1016/j.conbuildmat.2017.07.132.

Tetta, Z. C., Triantafillou, T. C., & Bournas, D. A. (2018). On the design of shear-strengthened RC members through the use of textile reinforced mortar overlays. Composites Part B: Engineering, 147, 178–196. doi:10.1016/j.compositesb.2018.04.008.

Tzoura, E., & Triantafillou, T. C. (2014). Shear strengthening of reinforced concrete T-beams under cyclic loading with TRM or FRP jackets. Materials and Structures, 49(1-2), 17–28. doi:10.1617/s11527-014-0470-9.

Contamine, R., Si Larbi, A., & Hamelin, P. (2013). Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures, 46, 447–458. doi:10.1016/j.engstruct.2012.07.024.

Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2015). Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B: Engineering, 77, 338–348. doi:10.1016/j.compositesb.2015.03.055.

Awani, O., El-Maaddawy, T., & El Refai, A. (2016). Numerical Simulation and Experimental Testing of Concrete Beams Strengthened in Shear with Fabric-Reinforced Cementitious Matrix. Journal of Composites for Construction, 20(6), 4016056. doi:10.1061/(asce)cc.1943-5614.0000711.

Contamine, R., Si Larbi, A., & Hamelin, P. (2013). Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures, 46, 447–458. doi:10.1016/j.engstruct.2012.07.024.

Chen, C., Yang, Y., Zhou, Y., Xue, C., Chen, X., Wu, H., ... & Li, X. (2020). Comparative analysis of natural fiber reinforced polymer and carbon fiber reinforced polymer in strengthening of reinforced concrete beams. Journal of cleaner production, 263, 121572. doi:10.1016/j.jclepro.2020.121572.

Escrig, C., Gil, L., Bernat-Maso, E., & Puigvert, F. (2015). Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar. Construction and Building Materials, 83, 248–260. doi:10.1016/j.conbuildmat.2015.03.013.

Triantafillou, T. C., & Papanicolaou, C. G. (2006). Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Materials and Structures, 39(1), 93–103. doi:10.1617/s11527-005-9034-3.

Trapko, T., Urbańska, D., & Kamiński, M. (2015). Shear strengthening of reinforced concrete beams with PBO-FRCM composites. Composites Part B: Engineering, 80, 63–72. doi:10.1016/j.compositesb.2015.05.024.

Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2015). Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B: Engineering, 77, 338–348. doi:10.1016/j.compositesb.2015.03.055.

Kotynia, R., Oller, E., Marí, A., & Kaszubska, M. (2021). Efficiency of shear strengthening of RC beams with externally bonded FRP materials – State-of-the-art in the experimental tests. Composite Structures, 267, 113891. doi:10.1016/j.compstruct.2021.113891.

Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:10.1016/j.jclepro.2019.119679.

Tetta, Z. C., Koutas, L. N., & Bournas, D. A. (2016). Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors. Composites Part B: Engineering, 95, 225–239. doi:10.1016/j.compositesb.2016.03.076.

Awani, O., El-Maaddawy, T., & El Refai, A. (2016). Numerical Simulation and Experimental Testing of Concrete Beams Strengthened in Shear with Fabric-Reinforced Cementitious Matrix. Journal of Composites for Construction, 20(6). doi:10.1061/(asce)cc.1943-5614.0000711.

Ombres, L., & Verre, S. (2021). Shear strengthening of reinforced concrete beams with SRG (Steel Reinforced Grout) composites: Experimental investigation and modelling. Journal of Building Engineering, 42, 103047. doi:10.1016/j.jobe.2021.103047.

Gonzalez-Libreros, J. H., Sneed, L. H., D’Antino, T., & Pellegrino, C. (2017). Behavior of RC beams strengthened in shear with FRP and FRCM composites. Engineering Structures, 150, 830–842. doi:10.1016/j.engstruct.2017.07.084.

Ombres, L., & Verre, S. (2019). Flexural Strengthening of RC Beams with Steel-Reinforced Grout: Experimental and Numerical Investigation. Journal of Composites for Construction, 23(5). doi:10.1061/(asce)cc.1943-5614.0000960.

Paramasivam, P., Lim, C. T. E., & Ong, K. C. G. (1998). Strengthening of RC beams with ferrocement laminates. Cement and Concrete Composites, 20(1), 53–65. doi:10.1016/S0958-9465(97)00068-1.

Shebl, H., & El-Nemr, A. (2021). Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams. Civil Engineering Journal, 7, 13-31. doi:10.28991/CEJ-SP2021-07-02.

Yan, M. (2015). High toughness resin concrete with steel wire mesh and the reinforcement theoretical research on prestressed concrete simply supported plate beam bridge. Southwest Jiaotong University, Chengdu, China.

Li, X., Xie, H., Yan, M., Gou, H., Zhao, G., & Bao, Y. (2018). Eccentric compressive behavior of reinforced concrete columns strengthened using steel mesh reinforced resin concrete. Applied Sciences (Switzerland), 8(10). doi:10.3390/app8101827.

Qeshta, I. M. I., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Ibrahim, Z., & Alengaram, U. J. (2014). The use of wire mesh-epoxy composite for enhancing the flexural performance of concrete beams. Materials and Design, 60, 250–259. doi:10.1016/j.matdes.2014.03.075.

Qeshta, I. M. I., Shafigh, P., Jumaat, M. Z., Abdulla, A. I., Alengaram, U. J., & Ibrahim, Z. (2014). Flexural behaviour of concrete beams bonded with wire mesh-epoxy composite. Applied Mechanics and Materials, 567, 411–416. doi:10.4028/www.scientific.net/AMM.567.411.

Jaafer, A. A., AL-Shadidi, R., & Kareem, S. L. (2019). Enhancing the punching load capacity of reinforced concrete slabs using an external epoxy-steel wire mesh composite. Fibers, 7(8), 68. doi:10.3390/fib7080068.

Al Nuaimi, N., Sohail, M. G., Hawileh, R. A., Abdalla, J. A., & Douier, K. (2020). Durability of reinforced concrete beams strengthened by galvanized steel mesh-epoxy systems under harsh environmental conditions. Composite Structures, 249, 112547. doi:10.1016/j.compstruct.2020.112547.

Abadel, A. A. (2021). Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. Journal of Materials Research and Technology, 15, 1815–1829. doi:10.1016/j.jmrt.2021.09.012.

ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.

BS 1881-116. (1983). Part 116: Method for Determination of Compressive Strength of Concrete Cubes. British Standards Institution, London, Unite Kingdom.

ASTM C78-09. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.

ASTM C496-96. (2010). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.

ASTM A615/A615-04. (2017). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615-A0615M-04.

ACI 549.1 R-88. (1988). Guide for the Design, Construction, and Repair of Ferrocement. ACI Structural Journal, 85(3), 32-51.

ACI Code 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, United States. doi:10.14359/51716937.

ACI 440.2R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, United States.

Sikafloor®-161. (2016). Product Data sheet. 2-Part Epoxy Primer, Levelling Mortar and Intermediate Layer. Building Trust, Sika. Available online: https://gcc.sika.com/content/dam/dms/gcc/s/sikafloor_-161.pdf (accessed on May 2022).

Sikadur®-31. (2016). CF-Slow: Product Data sheet. 2-Component Thixotropic Epoxy Adhesive. Available online: https://egy.sika.com/content/dam/dms/eg01/g/sikadur_-31_cf_slow.pdf (accessed on May 2022).

Liu, X., Chen, Y., Li, L. Z., Su, M. N., Lu, Z. D., & Yu, K. Q. (2019). Experimental study on the shear performance of reinforced concrete beams strengthened with bolted side-plating. Sustainability (Switzerland), 11(9). doi:10.3390/su11092465.

Ebead, U., Shrestha, K. C., Afzal, M. S., El Refai, A., & Nanni, A. (2017). Effectiveness of Fabric-Reinforced Cementitious Matrix in Strengthening Reinforced Concrete Beams. Journal of Composites for Construction, 21(2), 4016084. doi:10.1061/(asce)cc.1943-5614.0000741.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-06-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mustafa Al-Bazoon, Abdulkhaliq Jaafer, Haidar Haidar, Abbas Dawood

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message