Determination of Mass Properties in Floor Slabs from the Dynamic Response Using Artificial Neural Networks
Downloads
Doi: 10.28991/CEJ-2022-08-08-01
Full Text: PDF
[2] Georgoussis, G. K., & Mamou, A. (2019). Mass eccentricity effects on the torsional response of inelastic buildings. Vibroengineering Procedia, 23, 66–71. doi:10.21595/vp.2019.20553.
[3] De-la-Colina, J., & Valdés-González, J. (2021). New Proposal to Incorporate Seismic Accidental Torsion in the Design of Buildings. International Journal of Civil Engineering, 19(1), 1–16. doi:10.1007/s40999-020-00556-x.
[4] ASCE/SEI 7-16 (2017). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
[5] NTC-DS. (2021). Complementary Technical Standards for Earthquake Design: Construction Regulations of the CDMX. (In Spanish).
[6] EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance. European Committee for Standardization, Brussels, Belgium.
[7] Basu, D., & Giri, S. (2015). Accidental eccentricity in multistory buildings due to torsional ground motion. Bulletin of Earthquake Engineering, 13(12), 3779–3808. doi:10.1007/s10518-015-9788-0.
[8] Zarza-González, J., De-La-colina, J., & Valdés-González, J. (2021). Evaluation of an accidental-torsion design proposal considering firm-soil ground motions. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 37(1), 1–16. doi:10.23967/j.rimni.2020.10.009.
[9] Bourahla, N. (2015). Seismic accidental eccentricity: origins, effects and evaluation. Proceedings of the International Conference on innovations on structural engineering, 14-16 December 2015, Hyderabad, India.
[10] Zakaria, A., Shiva Rama Krishna, M., Vamsi Krishna, T. G. N. C., & Baig, M. M. (2019). Effects of the accidental eccentricity on regular and irregular buildings. International Journal of Innovative Technology and Exploring Engineering, 8(11), 2157–2163. doi:10.35940/ijitee.K2030.0981119.
[11] Bourahla, N., Boukhamacha, T., & Tafraout, S. (2006). Detection of the eccentricity variation in nonlinear response using artificial neural networks. 1st European Conference on Earthquake Engineering and Seismology, 3-8 September, 2006, Geneva, Switzerland.
[12] De-la-Llera, J. C., & Chopra, A. K. (1994). Accidental torsion in buildings due to stiffness uncertainty. Earthquake Engineering & Structural Dynamics, 23(2), 117–136. doi:10.1002/eqe.4290230202.
[13] De-la-Llera, J. C., & Chopra, A. K. (1994). Accidental torsion in buildings due to base rotational excitation. Earthquake Engineering & Structural Dynamics, 23(9), 1003–1021. doi:10.1002/eqe.4290230906.
[14] Wong, C. M., & Tso, W. K. (1994). Inelastic seismic response of torsionally unbalanced systems designed using elastic dynamic analysis. Earthquake Engineering & Structural Dynamics, 23(7), 777–798. doi:10.1002/eqe.4290230707.
[15] Shakib, H., & Tohidi, R. Z. (2002). Evaluation of accidental eccentricity in buildings due to rotational component of earthquake. Journal of Earthquake Engineering, 6(4), 431–445. doi:10.1080/13632460209350424.
[16] Stathopoulos, K. G., & Anagnostopoulos, S. A. (2005). Inelastic torsion of multistorey buildings under earthquake excitations. Earthquake Engineering and Structural Dynamics, 34(12), 1449–1465. doi:10.1002/eqe.486.
[17] De-la-Colina, J., González-Pérez, C. A., & Valdés-González, J. (2016). Accidental eccentricities, frame shear forces and ductility demands of buildings with uncertainties of stiffness and live load. Engineering Structures, 124, 113–127. doi:10.1016/j.engstruct.2016.06.012.
[18] Badaoui, M., Bourahla, N., & Bensaibi, M. (2019). Estimation of accidental eccentricities for multi-storey buildings using artificial neural networks. Asian Journal of Civil Engineering, 20, 703–711. doi:10.1007/s42107-019-00137-x.
[19] Andam, K. A. (1986). Floor live loads for office buildings. Building and Environment, 21(3–4), 211–219. doi:10.1016/0360-1323(86)90032-6.
[20] Ruiz, S. E., & Sampayo-Trujillo, A. (1997). Design Live Loads for Classrooms in United States and Mexico. Journal of Structural Engineering, 123(12), 1652–1657. doi:10.1061/(asce)0733-9445(1997)123:12(1652).
[21] Ruiz, S. E., & Soriano, A. (1997). Design Live Loads for Office Buildings in Mexico and the United States. Journal of Structural Engineering, 123(6), 816–822. doi:10.1061/(asce)0733-9445(1997)123:6(816).
[22] Kumar, S. (2002). Live loads in office buildings: Point-in-time load intensity. Building and Environment, 37(1), 79–89. doi:10.1016/S0360-1323(00)00074-3.
[23] Culver, C. G. (1976). Live-Load Survey Results for Office Buildings. Journal of the Structural Division, 102(12), 2269–2284. doi:10.1061/jsdeag.0004492.
[24] Harris, J. C., & Corotis, R. B. (1978). Hospital Inventory Load Survey. Journal of the Structural Division, 104(12), 1859–1868. doi:10.1061/jsdeag.0005052.
[25] Tapia-Hernández, E., Dominguez-Palacios, A. C., & Martínez-Ruíz, M. (2019). Live loads on floors of libraries and newspaper archive buildings. International Journal of Advanced Structural Engineering, 11(2), 285–296. doi:10.1007/s40091-019-0230-8.
[26] Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer, Cham, Switzerland. doi:10.1007/978-3-319-94463-0.
[27] Atiya, A. F. (1991). Learning algorithms for neural networks. PhD Thesis, California Institute of Technology, Pasadena, United States.
[28] González-Pérez, C., & Valdés-González, J. (2011). Identification of structural damage in a vehicular bridge using artificial neural networks. Structural Health Monitoring, 10(1), 33–48. doi:10.1177/1475921710365416.
[29] Haykin, S. (2009). Neural Networks: a Comprehensive Foundation. Prentice-Hall, Hoboken, United States.
[30] Jia, D. W., & Wu, Z. Y. (2022). Structural probabilistic seismic risk analysis and damage prediction based on artificial neural network. Structures, 41, 982–996. doi:10.1016/j.istruc.2022.05.056.
[31] Bourahla, N., Derbal, I., & Allal, N. (2014). Neural network for localization of mass and rigidity centers from dynamic responses of buildings. 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, 21-25 July 2014, Alaska, United States.
[32] Abambres, M., & Lantsoght, E. O. L. (2020). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads. Engineering Structures, 211, 1–9. doi:10.1016/j.engstruct.2020.110501.
[33] Mohammed, S. J., Abdel-khalek, H. A., & Hafez, S. M. (2021). Predicting Performance Measurement of Residential Buildings Using an Artificial Neural Network. Civil Engineering Journal, 7(3), 461–476. doi:10.28991/cej-2021-03091666.
[34] Pizarro, P. N., & Massone, L. M. (2021). Structural design of reinforced concrete buildings based on deep neural networks. Engineering Structures, 241, 1–15. doi:10.1016/j.engstruct.2021.112377.
[35] Vijyalakshmi Pai, G. A., & Rajasekaran, S. (2004). Neural networks, fuzzy logic and genetic algorithms. Prentice-Hall of India, Delhi, India.
[36] Demuth, H., Beale, M., & Hagan, M. (1992). Neural network toolbox. For Use with MATLAB. The MathWorks Inc., California, United States.
[37] Norgaard, M., Ravn, O., Poulsen, N., and Hansen, L. (2000). Neural Networks for Modelling and Control of Dynamic System. Springer-Verlag, London, United Kingdom.
[38] MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415–447. doi:10.1162/neco.1992.4.3.415.
[39] Yu, H., & Wilamowski, B. (2011). Levenberg–Marquardt Training. Industrial Electronics Handbook, Intelligent Systems, CRC Press, Boca Raton, United States.
[40] Dan Foresee, F., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. Proceedings of International Conference on Neural Networks (ICNN'97). doi:10.1109/icnn.1997.614194.
[41] Kramer, S. L. (1996). Geotechnical earthquake engineering (1st Ed.). Pearson Education India, Noida, India.
[42] Villaverde, R. (2009). Fundamental concepts of earthquake engineering (1st Ed.). CRC Press, Boca Raton, United States. doi:10.1201/9781439883112.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
