Stabilization of Gypsum Clay Soil by Adding Lime

Ikram Saidate, Abd Elmajid Berga, Tayeb Rikioui

Abstract


Often, the temperature and water variation exist in semi-arid areas of a clayey soil leads to vertical and horizontal settlements, cracks in the soil and in general disorder to the building installed on this soil. The objective of this work is to stabilize the local gypsum clay soil, which poses problems at the level of self-construction built on it. Chemical soil stabilization can improve soil properties. In fact, adding natural lime to these clays can provide an ideal solution for stabilizing them through interesting modifications to their geotechnical properties throw the experimental tests on both unstabilized and stabilized soil samples by adding lime in quantities of 2, 4, and 6%, in percentages by the soil's weight, prepared at room temperature, The unconfined compressive strength (UCS) at different curing ages is measured, The results obtained provide a significant increase in compressive strength and modulus of Elasticity which allow better qualities and improve strength parameters throughout any phase of earthwork construction design that leads to strengthening subgrades, reducing the thickness, and, as a result, low construction costs. The results of the study show that (1) for the best utilization effect, the optimum percentage of lime is 6%; (2) the UCS is 3.23 times of the pure soil after curing of 28 days under the optimum percentage of lime; (3) the curing age has a significant effect on strength; (4) the main reason for the strength increase of the modified soil is that the crystal produced by the pozzolanic activity fills the pores of the soil. The ideal percentage is 6% lime treatment with a resistance of 2.3 MPa and 135.60 MPa the value of elasticity modulus at 28 days.

 

Doi: 10.28991/CEJ-2022-08-11-010

Full Text: PDF


Keywords


Gypsum Clay; Stabilization; Lime; Compression; Strength; Modulus of Elasticity.

References


Xu, L., Zha, F., Liu, C., Kang, B., Liu, J., & Yu, C. (2020). Experimental Investigation on Carbonation Behavior in Lime-Stabilized Expansive Soil. Advances in Civil Engineering, 2020, 1–14. doi:10.1155/2020/7865469.

Harichane, K., Ghrici, M., & Kenai, S. (2012). Effet de la combinaison de la chaux et de la pouzzolane naturelle sur le compactage et la résistance des sols mous argileux. MATEC Web of Conferences, 2, 02009. doi:10.1051/matecconf/20120202009.

Parsons, R. L., & Kneebone, E. (2005). Field performance of fly ash stabilised subgrades. Proceedings of the Institution of Civil Engineers-Ground Improvement, 9(1), 33-38. doi:10.1680/grim.9.1.33.58543.

Ma, J., Su, Y., Liu, Y., & Tao, X. (2020). Strength and Microfabric of Expansive Soil Improved with Rice Husk Ash and Lime. Advances in Civil Engineering, 2020, 1–8. doi:10.1155/2020/9646205.

Osula, D. O. A. (1996). A comparative evaluation of cement and lime modification of laterite. Engineering Geology, 42(1), 71–81. doi:10.1016/0013-7952(95)00067-4.

Djouimaa, S., Sid, M., & Hidjeb, M. (2018). Effect of lime and cement on the geotechnical properties of an expansive soil. International Review of Civil Engineering, 9(3), 122–130. doi:10.15866/irece.v9i3.14457.

Liu, Q., Jiang, Q., Huang, M., Xin, J., & Chen, P. (2022). The fresh and hardened properties of 3D printing cement-base materials with self-cleaning nano-TiO2: An exploratory study. Journal of Cleaner Production, 379, 134804. doi:10.1016/j.jclepro.2022.134804.

Al-Rawas, A. A., Hago, A. W., & Al-Sarmi, H. (2005). Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Building and Environment, 40(5), 681–687. doi:10.1016/j.buildenv.2004.08.028.

Okagbue, C. O., & Yakubu, J. A. (2000). Limestone ash waste as a substitute for lime in soil improvement for engineering construction. Bulletin of Engineering Geology and the Environment, 58(2), 107–113. doi:10.1007/s100640050004.

Sakr, M. A., Shahin, M. A., & Metwally, Y. M. (2009). Utilization of lime for stabilizing soft clay soil of high organic content. Geotechnical and Geological Engineering, 27(1), 105–113. doi:10.1007/s10706-008-9215-2.

Kavak, A., & Baykal, G. (2012). Long-term behavior of lime-stabilized kaolinite clay. Environmental Earth Sciences, 66(7), 1943–1955. doi:10.1007/s12665-011-1419-8.

Guney, Y., Sari, D., Cetin, M., & Tuncan, M. (2007). Impact of cyclic wetting–drying on swelling behavior of lime-stabilized soil. Building and Environment, 42(2), 681–688. doi:10.1016/j.buildenv.2005.10.035.

Sahoo, J. P., & Pradhan, P. K. (2010). Effect of Lime Stabilized Soil Cushion on Strength Behaviour of Expansive Soil. Geotechnical and Geological Engineering, 28(6), 889–897. doi:10.1007/s10706-010-9332-6.

Harichane, K., Ghrici, M., Kenai, S., & Grine, K. (2011). Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotechnical and Geological Engineering, 29(5), 759–769. doi:10.1007/s10706-011-9415-z.

al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 714–725. doi:10.1016/j.jrmge.2016.04.002.

Al-Mukhtar, M., Khattab, S., & Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139–140, 17–27. doi:10.1016/j.enggeo.2012.04.004.

ASTM D698-12(2021). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400ft-ibf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.

Song, Y., Zhang, M., Gan, X., Dong, S., Ding, S., Geng, Y., & Li, J. (2022). Experimental Study on Mechanical Strength of Diesel-Contaminated Red Clay Solidified with Lime and Fly Ash. Geofluids, 2022, 1–12. doi:10.1155/2022/3891030.

ASTM D2166-00. (2017). Standard Test Methods for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166-00.

Bell, F. G. (1989). Lime stabilisation of clay soils. Bulletin of the International Association of Engineering Geology, 39(1), 67–74. doi:10.1007/bf02592537.

Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.

Ola, S. A. (1977). The potentials of lime stabilization of lateritic soils. Engineering Geology, 11(4), 305–317. doi:10.1016/0013-7952(77)90036-9.

Hossain, K. M. A., Lachemi, M., & Easa, S. (2007). Stabilized soils for construction applications incorporating natural resources of Papua new Guinea. Resources, Conservation and Recycling, 51(4), 711–731. doi:10.1016/j.resconrec.2006.12.003.

Manasseh, J., & Olufemi, A. I. (2008). Effect of lime on some geotechnical properties of Igumale shale. Electronic Journal of Geotechnical Engineering, 13(6), 1–12.

Akula, P., & Little, D. N. (2020). Analytical tests to evaluate pozzolanic reaction in lime stabilized soils. MethodsX, 7, 100928. doi:10.1016/j.mex.2020.100928.

Bruce, D. A. (2001). Practitioner’s guide to the deep mixing method. Ground Improvement, 5(3), 95–100. doi:10.1680/grim.5.3.95.40325.

Topolnicki, M. (2004). In-situ soil mixing, Chapter 9. Ground Improvement (2nd Ed.). Spon Press, Abingdon, United Kingdom.

Terashi, M. (2005). Keynote lecture: design of deep mixing in infrastructure applications. In Proc. International Conference on Deep Mixing Best Practice and Recent Advances-Deep Mixing, 23-25 May, 2005, Stockholm, Sweden.

Jha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53–64. doi:10.1016/j.enggeo.2015.08.020.

Uppal, H. L., & Chadda, L. R. (1967). Physico-chemical changes in the lime stabilization of black cotton soil (India). Engineering Geology, 2(3), 179–189. doi:10.1016/0013-7952(67)90017-8.

Bensalem, A. (2010). Characterization and exploitation of Benazzouz clay in road construction. (Memory of Magister) Badji Mokhtar Annaba University, Annaba, Algeria.

Bouazza, A. (2018). Study on the stability of soil with a gypsum-sandy clay matrix by mineral additions (ABADLA South West Algerian Region), University of Tahri-Mohamed-Bechar, Béchar, Algeria.

Contessi, S., Dalconi, M. C., Pollastri, S., Calgaro, L., Meneghini, C., Ferrari, G., ... & Artioli, G. (2021). Cement-stabilized contaminated soil: understanding Pb retention with XANES and Raman spectroscopy. Science of the Total Environment, 752, 141826. doi:10.1016/j.scitotenv.2020.141826.

Holm, G. (1979). Lime column stabilization-experiences concerning strength and deformation properties. Vag-Och Vattenbyggaren, 25(7/8), 45-48.

Solanki, P., Khoury, N., & Zaman, M. M. (2009). Engineering Properties and Moisture Susceptibility of Silty Clay Stabilized with Lime, Class C Fly Ash, and Cement Kiln Dust. Journal of Materials in Civil Engineering, 21(12), 749–757. doi:10.1061/(asce)0899-1561(2009)21:12(749).

Basack, S., Goswami, G., Khabbaz, H., Karakouzian, M., Baruah, P., & Kalita, N. (2021). A comparative study on soil stabilization relevant to transport infrastructure using bagasse ash and stone dust and cost effectiveness. Civil Engineering Journal, 7(11), 1947–1963. doi:10.28991/cej-2021-03091771.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 ikram / saidate

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message