Utilization of Bitumen Modified with Pet Bottles as an Alternative Binder for the Production of Paving Blocks
Vol. 9 No. 1 (2023): January
Research Articles
Downloads
Doi: 10.28991/CEJ-2023-09-01-08
Full Text: PDF
Awolusi, T., Oguntayo, D., Deifalla, A. F., Babalola, E., Natie, F., Aladegboye, O., & Azab, M. (2023). Utilization of Bitumen Modified with Pet Bottles as an Alternative Binder for the Production of Paving Blocks. Civil Engineering Journal, 9(1), 104–113. https://doi.org/10.28991/CEJ-2023-09-01-08
[1] Brouwer, M. T., Alvarado Chacon, F., & Thoden van Velzen, E. U. (2020). Effect of recycled content and PET quality on the properties of PET bottles, part III: Modelling of repetitive recycling. Packaging Technology and Science, 33(9), 373–383. doi:10.1002/pts.2489.
[2] Zhang, R., Ma, X., Shen, X., Zhai, Y., Zhang, T., Ji, C., & Hong, J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of Environmental Management, 260. doi:10.1016/j.jenvman.2019.110062.
[3] Taaffe, J., O'Sullivan, S., Rahman, M. E., & Pakrashi, V. (2014). Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks. Materials and Design, 60, 50–56. doi:10.1016/j.matdes.2014.03.045.
[4] Papong, S., Malakul, P., Trungkavashirakun, R., Wenunun, P., Chom-In, T., Nithitanakul, M., & Sarobol, E. (2014). Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production, 65, 539–550. doi:10.1016/j.jclepro.2013.09.030.
[5] Leng, Z., Padhan, R. K., & Sreeram, A. (2018). Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, 180, 682–688. doi:10.1016/j.jclepro.2018.01.171.
[6] Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. doi:10.1016/j.eurpolymj.2014.02.005.
[7] Muritala, K. B., & Adewole, J. K. (2017). Development of Nigeria's Bitumen for National Economic Growth: Opportunities for Membrane Separation Technology. Journal of the Nigerian Society of Chemical Engineers, 32(2), 96-96.
[8] Boom, Y. J., Enfrin, M., Grist, S., & Giustozzi, F. (2022). Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. Science of The Total Environment, 832, 155037. doi:10.1016/j.scitotenv.2022.155037.
[9] Wang, T., Wang, J., Hou, X., & Xiao, F. (2021). Effects of SARA fractions on low temperature properties of asphalt binders. Road Materials and Pavement Design, 22(3), 539–556. doi:10.1080/14680629.2019.1628803.
[10] D'Melo, D., & Taylor, R. (2015). Constitution and structure of bitumens. The Shell bitumen handbook. ICE Publishing, London, United Kingdom.
[11] RemiŠ¡ová, E., & Holí½, M. (2017). Changes of Properties of Bitumen Binders by Additives Application. IOP Conference Series: Materials Science and Engineering, 245, 032003. doi:10.1088/1757-899x/245/3/032003.
[12] Lewandowski, L. H. (1994). Polymer modification of paving asphalt binders. Rubber Chemistry and Technology, 67(3), 447–480. doi:10.5254/1.3538685.
[13] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and bitumen modification: A review on latest advances. Applied Sciences (Switzerland), 9(4). doi:10.3390/app9040742.
[14] SMITHERS. (2022). The Future of PET packaging to 2025. Available online: https://www.smithers.com/en-gb/services/market-reports/packaging/the-future-of-pet-packaging-to-2025 (accessed on August 2022).
[15] Tsironi, T. N., Chatzidakis, S. M., & Stoforos, N. G. (2022). The future of polyethylene terephthalate bottles: Challenges and sustainability. Packaging Technology and Science, 35(4), 317–325. doi:10.1002/pts.2632.
[16] Ben Zair, M. M., Jakarni, F. M., Muniandy, R., Hassim, S., & Ansari, A. H. (2022). A Brief Review: Application of Recycled Polyethylene Terephthalate as a Modifier for Asphalt Binder. Lecture Notes in Civil Engineering, 193, 739–756. doi:10.1007/978-3-030-87379-0_56.
[17] Margolis, J. M. (2020). Engineering thermoplastics: properties and applications. CRC Press, London, United Kingdom. doi:10.1201/9781003066156.
[18] Atta, A. M., Al-Lohedan, H. A., Ezzat, A. O., & Sabeela, N. I. (2020). New imidazolium ionic liquids from recycled polyethylene terephthalate waste for curing epoxy resins as organic coatings of steel. Coatings, 10(11), 1–17. doi:10.3390/coatings10111139.
[19] Gopinath, P., & Naveen Kumar, C. (2021). Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Materials Today: Proceedings, 43, 941–946. doi:10.1016/j.matpr.2020.07.224.
[20] Ogundipe, O. M. (2019). The Use of Polyethylene Terephthalate Waste for Modifying Asphalt Concrete Using the Marshall Test. Slovak Journal of Civil Engineering, 27(2), 9–15. doi:10.2478/sjce-2019-0010.
[21] ASTM C39/C39M-20. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-20.
[22] Vila, P., Pereyra, M. N., & Gutiérrez, í. (2017). Resistencia a la compresión de adoquines de hormigón. Resultados tendientes a validar el ensayo en medio adoquín. Revista ALCONPAT, 7(3), 247–261. doi:10.21041/ra.v7i3.186.
[23] BS 1881-122. (1998). Testing Concrete-Part 122: Method for Determination of Water Absorption. British Standard Institute, London, United Kingdom.
[24] BS 812: Part 114. (1989). Testing Aggregate: Method for Determination of Polished-Stone Value. British Standard Institute, London, United Kingdom.
[25] Hafeez, I., Kamal, M. A., Riaz, K., & Khan, M. I. (2015). A Laboratory Experimentation Based Ranking of Margalla Crush Aggregates. University of Engineering and Technology Taxila. Technical Journal, 20(3), 62.
[26] Corley-Lay, J. B. (1998). Friction and surface texture characterization of 14 pavement test sections in Greenville, North Carolina. Transportation Research Record, 1639(1639), 155–161. doi:10.3141/1639-17.
[27] ASTM C1747/C1747M-13. (2022). Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. ASTM International, Pennsylvania, United States.
[28] Saboo, N., Nirmal Prasad, A., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262, 120581. doi:10.1016/j.conbuildmat.2020.120581.
[29] Awodiji, C. T., Sule, S., & Oguguo, C. (2022). Comparative study on the strength properties of paving blocks produced from municipal plastic waste. Nigerian Journal of Technology, 40(5), 762–770. doi:10.4314/njt.v40i5.1.
[30] Agyeman, S., Obeng-Ahenkora, N. K., Assiamah, S., & Twumasi, G. (2019). Exploiting recycled plastic waste as an alternative binder for paving blocks production. Case Studies in Construction Materials, 11, 246. doi:10.1016/j.cscm.2019.e00246.
[31] Udawattha, C., Galabada, H., & Halwatura, R. (2017). Mud concrete paving block for pedestrian pavements. Case Studies in Construction Materials, 7, 249–262. doi:10.1016/j.cscm.2017.08.005.
[32] Jasmee, S., Omar, G., Masripan, N. A. B., Kamarolzaman, A. A., Ashikin, A. S., & Che Ani, F. (2018). Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Materials Research Express, 5(9), 96304. doi:10.1088/2053-1591/aad81e.
[33] RD/GN/009. (1989). Guidance Notes on Road Testing. Research & Development Division, Highway Departments, University of Hong Kong, Pok Fu Lam, Hong Kong.
[34] Hosking, R. (1992). Road Aggregates and Skidding. TRL State of the Art Review No 4. Transport Research Laboratory. Her Majesty's Stationary Office, London, United Kingdom.
[35] Rao, S. K., Sravana, P., & Rao, T. C. (2016). Abrasion resistance and mechanical properties of Roller Compacted Concrete with GGBS. Construction and Building Materials, 114, 925–933. doi:10.1016/j.conbuildmat.2016.04.004.
[2] Zhang, R., Ma, X., Shen, X., Zhai, Y., Zhang, T., Ji, C., & Hong, J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of Environmental Management, 260. doi:10.1016/j.jenvman.2019.110062.
[3] Taaffe, J., O'Sullivan, S., Rahman, M. E., & Pakrashi, V. (2014). Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks. Materials and Design, 60, 50–56. doi:10.1016/j.matdes.2014.03.045.
[4] Papong, S., Malakul, P., Trungkavashirakun, R., Wenunun, P., Chom-In, T., Nithitanakul, M., & Sarobol, E. (2014). Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production, 65, 539–550. doi:10.1016/j.jclepro.2013.09.030.
[5] Leng, Z., Padhan, R. K., & Sreeram, A. (2018). Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, 180, 682–688. doi:10.1016/j.jclepro.2018.01.171.
[6] Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. doi:10.1016/j.eurpolymj.2014.02.005.
[7] Muritala, K. B., & Adewole, J. K. (2017). Development of Nigeria's Bitumen for National Economic Growth: Opportunities for Membrane Separation Technology. Journal of the Nigerian Society of Chemical Engineers, 32(2), 96-96.
[8] Boom, Y. J., Enfrin, M., Grist, S., & Giustozzi, F. (2022). Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. Science of The Total Environment, 832, 155037. doi:10.1016/j.scitotenv.2022.155037.
[9] Wang, T., Wang, J., Hou, X., & Xiao, F. (2021). Effects of SARA fractions on low temperature properties of asphalt binders. Road Materials and Pavement Design, 22(3), 539–556. doi:10.1080/14680629.2019.1628803.
[10] D'Melo, D., & Taylor, R. (2015). Constitution and structure of bitumens. The Shell bitumen handbook. ICE Publishing, London, United Kingdom.
[11] RemiŠ¡ová, E., & Holí½, M. (2017). Changes of Properties of Bitumen Binders by Additives Application. IOP Conference Series: Materials Science and Engineering, 245, 032003. doi:10.1088/1757-899x/245/3/032003.
[12] Lewandowski, L. H. (1994). Polymer modification of paving asphalt binders. Rubber Chemistry and Technology, 67(3), 447–480. doi:10.5254/1.3538685.
[13] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and bitumen modification: A review on latest advances. Applied Sciences (Switzerland), 9(4). doi:10.3390/app9040742.
[14] SMITHERS. (2022). The Future of PET packaging to 2025. Available online: https://www.smithers.com/en-gb/services/market-reports/packaging/the-future-of-pet-packaging-to-2025 (accessed on August 2022).
[15] Tsironi, T. N., Chatzidakis, S. M., & Stoforos, N. G. (2022). The future of polyethylene terephthalate bottles: Challenges and sustainability. Packaging Technology and Science, 35(4), 317–325. doi:10.1002/pts.2632.
[16] Ben Zair, M. M., Jakarni, F. M., Muniandy, R., Hassim, S., & Ansari, A. H. (2022). A Brief Review: Application of Recycled Polyethylene Terephthalate as a Modifier for Asphalt Binder. Lecture Notes in Civil Engineering, 193, 739–756. doi:10.1007/978-3-030-87379-0_56.
[17] Margolis, J. M. (2020). Engineering thermoplastics: properties and applications. CRC Press, London, United Kingdom. doi:10.1201/9781003066156.
[18] Atta, A. M., Al-Lohedan, H. A., Ezzat, A. O., & Sabeela, N. I. (2020). New imidazolium ionic liquids from recycled polyethylene terephthalate waste for curing epoxy resins as organic coatings of steel. Coatings, 10(11), 1–17. doi:10.3390/coatings10111139.
[19] Gopinath, P., & Naveen Kumar, C. (2021). Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Materials Today: Proceedings, 43, 941–946. doi:10.1016/j.matpr.2020.07.224.
[20] Ogundipe, O. M. (2019). The Use of Polyethylene Terephthalate Waste for Modifying Asphalt Concrete Using the Marshall Test. Slovak Journal of Civil Engineering, 27(2), 9–15. doi:10.2478/sjce-2019-0010.
[21] ASTM C39/C39M-20. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-20.
[22] Vila, P., Pereyra, M. N., & Gutiérrez, í. (2017). Resistencia a la compresión de adoquines de hormigón. Resultados tendientes a validar el ensayo en medio adoquín. Revista ALCONPAT, 7(3), 247–261. doi:10.21041/ra.v7i3.186.
[23] BS 1881-122. (1998). Testing Concrete-Part 122: Method for Determination of Water Absorption. British Standard Institute, London, United Kingdom.
[24] BS 812: Part 114. (1989). Testing Aggregate: Method for Determination of Polished-Stone Value. British Standard Institute, London, United Kingdom.
[25] Hafeez, I., Kamal, M. A., Riaz, K., & Khan, M. I. (2015). A Laboratory Experimentation Based Ranking of Margalla Crush Aggregates. University of Engineering and Technology Taxila. Technical Journal, 20(3), 62.
[26] Corley-Lay, J. B. (1998). Friction and surface texture characterization of 14 pavement test sections in Greenville, North Carolina. Transportation Research Record, 1639(1639), 155–161. doi:10.3141/1639-17.
[27] ASTM C1747/C1747M-13. (2022). Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. ASTM International, Pennsylvania, United States.
[28] Saboo, N., Nirmal Prasad, A., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262, 120581. doi:10.1016/j.conbuildmat.2020.120581.
[29] Awodiji, C. T., Sule, S., & Oguguo, C. (2022). Comparative study on the strength properties of paving blocks produced from municipal plastic waste. Nigerian Journal of Technology, 40(5), 762–770. doi:10.4314/njt.v40i5.1.
[30] Agyeman, S., Obeng-Ahenkora, N. K., Assiamah, S., & Twumasi, G. (2019). Exploiting recycled plastic waste as an alternative binder for paving blocks production. Case Studies in Construction Materials, 11, 246. doi:10.1016/j.cscm.2019.e00246.
[31] Udawattha, C., Galabada, H., & Halwatura, R. (2017). Mud concrete paving block for pedestrian pavements. Case Studies in Construction Materials, 7, 249–262. doi:10.1016/j.cscm.2017.08.005.
[32] Jasmee, S., Omar, G., Masripan, N. A. B., Kamarolzaman, A. A., Ashikin, A. S., & Che Ani, F. (2018). Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Materials Research Express, 5(9), 96304. doi:10.1088/2053-1591/aad81e.
[33] RD/GN/009. (1989). Guidance Notes on Road Testing. Research & Development Division, Highway Departments, University of Hong Kong, Pok Fu Lam, Hong Kong.
[34] Hosking, R. (1992). Road Aggregates and Skidding. TRL State of the Art Review No 4. Transport Research Laboratory. Her Majesty's Stationary Office, London, United Kingdom.
[35] Rao, S. K., Sravana, P., & Rao, T. C. (2016). Abrasion resistance and mechanical properties of Roller Compacted Concrete with GGBS. Construction and Building Materials, 114, 925–933. doi:10.1016/j.conbuildmat.2016.04.004.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
