Ultimate Load of Different Types of Reinforced Self-Compacting Concrete Columns Attacked by Sulphate
Abstract
Doi: 10.28991/CEJ-2022-08-10-04
Full Text: PDF
Keywords
References
Türkel, S., Felekoǧlu, B., & Dulluç, S. (2007). Influence of various acids on the physico-mechanical properties of pozzolanic cement mortars. Sadhana, 32(6), 683–691. doi:10.1007/s12046-007-0048-0.
Bassuoni, M. T., Nehdi, M., & Amin, M. (2007). Self-compacting concrete: Using limestone to resist sulfuric acid. Proceedings of Institution of Civil Engineers: Construction Materials, 160(3), 113–123. doi:10.1680/coma.2007.160.3.113.
Hewlett, P. C., & Liska, M. (2019). Lea’s chemistry of cement and concrete. Butterworth-Heinemann, Massachusetts, United States. doi:10.1016/B978-0-7506-6256-7.X5007-3.
Basheer, L., Kropp, J., & Cleland, D. J. (2001). Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials, 15(2–3), 93–103. doi:10.1016/S0950-0618(00)00058-1.
Wang, J. G. (1994). Sulfate attack on hardened cement paste. Cement and Concrete Research, 24(4), 735–742. doi:10.1016/0008-8846(94)90199-6.
Makhloufi, Z., Kadri, E. H., Bouhicha, M., & Benaissa, A. (2012). Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Construction and Building Materials, 26(1), 497–504. doi:10.1016/j.conbuildmat.2011.06.050.
Khitab, A., Arshad, M. T., Awan, F. M., & Khan, I. (2013). Development of an acid resistant concrete: a review. International Journal of Sustainable Construction Engineering and Technology, 4(2), 33-38.
Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., & Sato, T. (2010). Cement and Concrete Nanoscience and Nanotechnology. Materials, 3(2), 918–942. doi:10.3390/ma3020918.
Rasheed, L., Salih, S., & Hanash, Z. (2018). Behavior of normal reinforced concrete columns exposed to different soils. MATEC Web of Conferences, 162, 04018. doi:10.1051/matecconf/201816204018.
Nochaiya, T., Wongkeo, W., & Chaipanich, A. (2010). Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel, 89(3), 768–774. doi:10.1016/j.fuel.2009.10.003.
Caballero, C. E., Sanchez, E., Cano, U., Gonzalez, J. G., & Castaño, V. (2000). On the effect of fly ash on the corrosion properties of reinforced mortars. Corrosion Reviews, 18(2–3), 105–112. doi:10.1515/CORRREV.2000.18.2-3.105.
Mohamed, A. F., Shafiq, N., Nuruddin, M. F., & Elheber, A. (2013). Effect of silica fume on the properties of steel-fibres reinforced self-compacting concrete. International Journal of Civil and Environmental Engineering, 7(10), 754-758. doi:10.5281/zenodo.1088572.
Huynh-Xuan, T., Do-Dai, T., Ngo-Thanh, T., Pham, T. M., & Nguyen-Minh, L. (2021). Effect of Sulfate Attack on Reinforced Concrete Columns Confined with CFRP Sheets under Axial Compression. Journal of Composites for Construction, 25(6). doi:10.1061/(asce)cc.1943-5614.0001151.
ANWAR, M., & Makhlouf, A. (2021). Performance of Fly Ash Concrete against Sulfate Attack. Journal of Engineering Sciences, 49(No 2), 178–197. doi:10.21608/jesaun.2021.53250.1024.
Selvan, S. (2021). Effect of Cement Composition in Concrete on Resisting External Sulfate Attack. Journal of Xi’an University of Architecture & Technology, XIII(4), 470–480.
Bektimirova, U., Sharafutdinov, E., Shon, C., Zhang, D., & Kim, J. (2020). Statistical Analysis of Sulfate Attack Resistance of Reactive Powder Concrete. XV International Conference on Durability of Building Materials and Components. EBook of Proceedings. doi:10.23967/dbmc.2020.129.
Rasheed, L. S., Salih, S. A., & Hanash, Z. F. (2020). The of Polymer RC Columns Exposed to aggressive Soils. IOP Conference Series: Materials Science and Engineering, 888(1), 12009. doi:10.1088/1757-899X/888/1/012009.
Uysal, M., & Yilmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 33(7), 771–776. doi:10.1016/j.cemconcomp.2011.04.005.
Phani, S.S., Seshadri, S.T., Rao, S., Sravana, & Sarik, P. (2013). Studies on Effect of Mineral Admixtures on Durability Properties of High Strength Self Compacting Concrete. International Journal of Research in Engineering and Technology, 2(09), 98–104. doi:10.15623/ijret.2013.0209016.
Mhuder, W. J., & Chassib, S. M. (2020). Experimental study of strengthening of RC columns with steel fibres concrete. Materials Science Forum, 1002, 551–564. doi:10.4028/www.scientific.net/MSF.1002.551.
Qasim, O. A. (2018). of Different Self-Compacted Concrete Mixes on Short Reinforced Concrete Columns. International Journal of Applied Engineering Research, 13(2), 1014-1034.
Mosleh Salman, M., & Abdul Ghani Zghair, L. (2018). of Self Compacting Concrete Subjected to Sulphuric Acid. Journal of Engineering and Sustainable Development, 2018(05), 01–09. doi:10.31272/jeasd.2018.5.1.
Dakshina Murthy N.R., Raaseshu D., Seshagiri Rao M.V. (2007). Studies on fly ash concrete under sulphate attack in ordinary, standard and higher grades at earlier ages. Asian Journal of Civil Engineering and Housing, 8(2): 203–214.
Liu, T., Zou, D., Teng, J., & Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28(1), 201–207. doi:10.1016/j.conbuildmat.2011.08.036.
Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. doi:10.1016/j.cemconres.2004.04.004.
Girardi, F., Vaona, W., & Di Maggio, R. (2010). Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cement and Concrete Composites, 32(8), 595–602. doi:10.1016/j.cemconcomp.2010.07.002.
DOI: 10.28991/CEJ-2022-08-10-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Nura Jasim muhammed, Lina Sehab, Shaima Sakin

This work is licensed under a Creative Commons Attribution 4.0 International License.