Investigation of Honeycomb Sandwich Panel Structure using Aluminum Alloy (AL6XN) Material under Blast Loading
Downloads
Doi: 10.28991/CEJ-2022-08-05-014
Full Text: PDF
Downloads
[2] Soleimani, S. M., Ghareeb, N. H., & Shaker, N. H. (2018). Modeling, Simulation and Optimization of Steel Sandwich Panels under Blast Loading. American Journal of Engineering and Applied Sciences, 11(3), 1130–1140. doi:10.3844/ajeassp.2018.1130.1140.
[3] Kumar, R., & Patel, S. (2019). Failure analysis on octagonal honeycomb sandwich panel under air blast loading. Materials Today: Proceedings, 46, 9667–9672. doi:10.1016/j.matpr.2020.07.525.
[4] Dharmasena, K. P., Wadley, H. N. G., Xue, Z., & Hutchinson, J. W. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering, 35(9), 1063–1074. doi:10.1016/j.ijimpeng.2007.06.008.
[5] Xue, Z., & Hutchinson, J. W. (2006). Crush dynamics of square honeycomb sandwich cores. International Journal for Numerical Methods in Engineering, 65(13), 2221–2245. doi:10.1002/nme.1535.
[6] Yu, S., Yu, X., Ao, Y., Mei, J., Jiang, W., Liu, J., Li, C., & Huang, W. (2021). The impact resistance of composite Y-shaped cores sandwich structure. Thin-Walled Structures, 169, 108389. doi:10.1016/j.tws.2021.108389.
[7] Ma, J., Dai, H., Chai, S., & Chen, Y. (2021). Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear. Materials and Design, 206, 109808. doi:10.1016/j.matdes.2021.109808.
[8] Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z., & Wang, Z. (2022). Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Marine Structures, 84, 103198. doi:10.1016/j.marstruc.2022.103198.
[9] Zhu, F., & Lu, G. (2007). A review of blast and impact of metallic and sandwich structures. Electronic Journal of Structural Engineering, (1), 92-101.
[10] Cerik, B. C. (2017). Damage assessment of marine grade aluminium alloy-plated structures due to air blast and explosive loads. Thin-Walled Structures, 110, 123–132. doi:10.1016/j.tws.2016.10.021.
[11] Li, Y., Ren, X., Zhang, X., Chen, Y., Zhao, T., & Fang, D. (2021). Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading. Composite Structures, 258, 113317. doi:10.1016/j.compstruct.2020.113317.
[12] Deqiang, S., Weihong, Z., & Yanbin, W. (2010). Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Composite Structures, 92(11), 2609–2621. doi:10.1016/j.compstruct.2010.03.016.
[13] Nayak, S. K., Singh, A. K., Belegundu, A. D., & Yen, C. F. (2013). Process for design optimization of honeycomb core sandwich panels for blast load mitigation. Structural and Multidisciplinary Optimization, 47(5), 749–763. doi:10.1007/s00158-012-0845-x.
[14] Lee, J., Lacy, T. E., & Pittman, C. U. (2021). Lightning mechanical damage prediction in carbon/epoxy laminates using equivalent air blast overpressure. Composites Part B: Engineering, 212, 108649. doi:10.1016/j.compositesb.2021.108649.
[15] Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. JRC Technical reports, European Laboratory for Structural Assessment. Publications Office of the European Union, Luxemborg city, Luxemborg. doi:10.2788/61866.
[16] Fleck, N. A., & Deshpande, V. S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, Transactions ASME, 71(3), 386–401. doi:10.1115/1.1629109.
[17] Takeda, N., Minakuchi, S., & Okabe, Y. (2007). Smart Composite Sandwich Structures for Future Aerospace Application -Damage Detection and Suppression-: a Review. Journal of Solid Mechanics and Materials Engineering, 1(1), 3–17. doi:10.1299/jmmp.1.3.
[18] Sahoo, D. K., Guha, A., Tewari, A., & Singh, R. K. (2017). Performance of Monolithic Plate and Layered Plates under Blast Load. Procedia Engineering, 173, 1909–1917. doi:10.1016/j.proeng.2016.12.251.
[19] Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z., & Wang, Z. (2022). Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Marine Structures, 84, 103198. doi:10.1016/j.marstruc.2022.103198.
[20] Markose, A., & Rao, C. L. (2017). Mechanical response of V shaped plates under blast loading. Thin-Walled Structures, 115, 12–20. doi:10.1016/j.tws.2017.02.002.
[21] Wowk, D., Reyno, T., Yeung, R., & Marsden, C. (2020). An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact. Composite Structures, 254, 112739. doi:10.1016/j.compstruct.2020.112739.
[22] Zhao, C., He, K., Zhi, L., Lu, X., Pan, R., Gautam, A., Wang, J., & Li, X. (2021). Blast behavior of steel-concrete-steel sandwich panel: Experiment and numerical simulation. Engineering Structures, 246, 112998. doi:10.1016/j.engstruct.2021.112998.
[23] Jing, L., Liu, K., Su, X., & Guo, X. (2021). Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading. Thin-Walled Structures, 161, 107445. doi:10.1016/j.tws.2021.107445.
[24] Mary Varghese, R., & Mary Varghese, K. (2022). Comparative study on the blast load response of woven and lattice core metallic sandwich panels. Materials Today: Proceedings. doi:10.1016/j.matpr.2022.04.257.
[25] Zhang, C., Tan, P. J., & Yuan, Y. (2022). Confined blast loading of steel plates with and without pre-formed holes. International Journal of Impact Engineering, 163, 104183. doi:10.1016/j.ijimpeng.2022.104183.
[26] Shrot, A., & Bäker, M. (2012). Determination of Johnson-Cook parameters from machining simulations. Computational Materials Science, 52(1), 298–304. doi:10.1016/j.commatsci.2011.07.035.
[27] Nemat-Nasser, S., Guo, W. G., & Kihl, D. P. (2001). Thermomechanical response of AL6XN stainless steel over a wide range of strain rates and temperatures. Journal of the Mechanics and Physics of Solids, 49(8), 1823–1846. doi:10.1016/S0022-5096(00)00069-7.
[28] Abed, F. H., & Voyiadjis, G. Z. (2005). Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals. International Journal of Plasticity, 21(8), 1618–1639. doi:10.1016/j.ijplas.2004.11.003.
[29] Prabowo, A. R., Tuswan, T., Nurcholis, A., & Pratama, A. A. (2021). Structural Resistance of Simplified Side Hull Models Accounting for Stiffener Design and Loading Type. Mathematical Problems in Engineering, 2021, 1–19. doi:10.1155/2021/6229498.
[30] Akbar, M. S., Prabowo, A. R., Tjahjana, D. D. D. P., & Tuswan, T. (2021). Analysis of plated-hull structure strength against hydrostatic and hydrodynamic loads: A case study of 600 TEU container ships. Journal of the Mechanical Behavior of Materials, 30(1), 237–248. doi:10.1515/jmbm-2021-0025.
[31] Fajri, A., Prabowo, A. R., & Muhayat, N. (2022). Assessment of ship structure under fatigue loading: FE benchmarking and extended performance analysis. Curved and Layered Structures, 9(1), 163–186. doi:10.1515/cls-2022-0014.
[32] Prabowo, A. R., Baek, S. J., Cho, H. J., Byeon, J. H., Bae, D. M., & Sohn, J. M. (2017). The effectiveness of thin-walled hull structures against collision impact. Latin American Journal of Solids and Structures, 14(7), 1345–1360. doi:10.1590/1679-78253895.
[33] Prabowo, A. R., Cao, B., Sohn, J. M., & Bae, D. M. (2020). Crashworthiness assessment of thin-walled double bottom tanker: Influences of seabed to structural damage and damage-energy formulae for grounding damage calculations. Journal of Ocean Engineering and Science, 5(4), 387–400. doi:10.1016/j.joes.2020.03.002.
[34] Prabowo, A. R., Ridwan, R., & Muttaqie, T. (2022). On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs, 6(3), 46. doi:10.3390/designs6030046.
[35] Gagnon, R. E., & Wang, J. (2012). Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel. Cold Regions Science and Technology, 81, 26–35. doi:10.1016/j.coldregions.2012.04.006.
[36] Alabdullah, M., Polishetty, A., Nomani, J., & Littelfair, G. (2016). Experimental and finite element analysis of machinability of AL6XN super austenitic stainless steel. The International Journal of Advanced Manufacturing Technology, 91(1-4), 501–516. doi:10.1007/s00170-016-9766-y.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.