Characteristics of Foamed Concrete Containing Ultra-fine Drift Sand of the Yangtze River

Fares Ali Al-Sairafi, Chaohua Jiang, Wang XinXin, Hussein Yousif Aziz

Abstract


The primary goal of this study was to evaluate the use of Ultra-fine Drift Sand from the Yangtze River (China) in place of natural sand in the production of foamed concrete. The experimental design included factors with varying levels: the proportion of Ultra-fine Drift Sand at four levels (0 percent, 30%, 60%, and 100%). Ultra-fine Drift Sand was substituted in proportion to the mass of material. Each factor's effect on compressive strength, density (dry and saturated), air voids, and water absorption was assessed. According to the results, all factors had significant findings. The compressive strength of concrete increased due to an increase in curing time; fly ash content up to 30%; increasing the percent of Yangzi river sand; and decreasing slag. The mixture of 10% SF (Silica Fume), 24% FA (Fly Ash) and 100% YS (Yangzi soil) gives the enhanced results in concrete strength, by which it reaches about 7 MPa compared with other findings. The remaining percentages of mixing benefit compression strength results. This method of treatment provides an economical way through providing a cheap material that enhances the mechanical properties of concrete, provides a light weight concrete, and a good isolator material to improve the building's thermal insulation to reduce ecological problems and save energy.

 

Doi: 10.28991/CEJ-2022-08-08-013

Full Text: PDF


Keywords


Foamed Concrete; Ultra-Fine Sand; Compressive Strength; Drift Sand.

References


Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787–799. doi:10.1016/j.conbuildmat.2019.06.052.

Luan, J., Chen, X., Ning, Y., & Shi, Z. (2022). Beneficial utilization of ultra-fine dredged sand from Yangtze River channel as a concrete material based on the minimum paste theory. Case Studies in Construction Materials, 16, e01098. doi:10.1016/j.cscm.2022.e01098.

da Silva, R. C., Puglieri, F. N., de Genaro Chiroli, D. M., Bartmeyer, G. A., Kubaski, E. T., & Tebcherani, S. M. (2021). Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents. Science of the Total Environment, 771, 145276. doi:10.1016/j.scitotenv.2021.145276.

Jiang, C., Guo, W., Chen, H., Zhu, Y., & Jin, C. (2018). Effect of filler type and content on mechanical properties and microstructure of sand concrete made with superfine waste sand. Construction and Building Materials, 192, 442–449. doi:10.1016/j.conbuildmat.2018.10.167.

Qiuyue, Z. (2021). Study on Mechanical Response of Ecological Sea wall Block of Recycled Aggregate Porous Concrete. Master Thesis, Hohai University, Nanjing, China.

Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003. (In Chinese).

Kunhanandan Nambiar, E. K., & Ramamurthy, K. (2008). Fresh State Characteristics of Foam Concrete. Journal of Materials in Civil Engineering, 20(2), 111–117. doi:10.1061/(asce)0899-1561(2008)20:2(111).

Abd Elrahman, M., Sikora, P., Chung, S. Y., & Stephan, D. (2021). The performance of ultra-lightweight foamed concrete incorporating nanosilica. Archives of Civil and Mechanical Engineering, 21(2). doi:10.1007/s43452-021-00234-2.

Ahmad, M. R., & Chen, B. (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B: Engineering, 171, 46–60. doi:10.1016/j.compositesb.2019.04.025.

Luan, J., Chen, X., Ning, Y., & Zhang, W. (2022). Mechanical characteristics and energy dissipation characteristics of dredged sand concrete during triaxial loading. Journal of Building Engineering, 55. doi:10.1016/j.jobe.2022.104700.

Obla, K. H., Hill, R. L., Thomas, M. D. A., Shashiprakash, S. G., & Perebatova, O. (2003). Properties of Concrete Containing Ultra-Fine Fly Ash. ACI Materials Journal, 100(5), 426–433. doi:10.14359/12819.

Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilization towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939. doi:10.1016/j.jclepro.2022.133939.

Li, S., Chen, X., Zhang, W., Feng, Z., & Wang, R. (2022). Mechanical properties of alkali activated slag concrete with ultra-fine dredged sand from Yangtze River. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 39(1), 335–343. doi:10.13801/j.cnki.fhclxb.20210419.003.

Wan Ibrahim, M. H., Jamaludin, N., Irwan, J. M., Ramadhansyah, P. J., & Suraya Hani, A. (2014). Compressive and flexural strength of foamed concrete containing polyolefin fibers. Advanced Materials Research, 911, 489–493. doi:10.4028/www.scientific.net/AMR.911.489.

Muthusamy, K., Budiea, A. M. A., Zaidan, A. L. F., Rasid, M. H., & Hazimmah, D. S. (2017). Properties of concrete containing foamed concrete block waste as fine aggregate replacement. IOP Conference Series: Materials Science and Engineering, 271(1), 271. doi:10.1088/1757-899X/271/1/012084.

Elrahman, M. A., El Madawy, M. E., Chung, S. Y., Sikora, P., & Stephan, D. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7), 1447. doi:10.3390/app9071447.

Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T., & Shi, J. (2021). A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study. Journal of Cleaner Production, 288, 125085. doi:10.1016/j.jclepro.2020.125085.

Zhou, D., Gao, H., Liao, H., Fang, L., & Cheng, F. (2021). Enhancing the performance of foam concrete containing fly ash and steel slag via a pressure foaming process. Journal of Cleaner Production, 329, 129664. doi:10.1016/j.jclepro.2021.129664.

Colangelo, F., Cioffi, R., & Farina, I. (Eds.). (2021). Handbook of sustainable concrete and industrial waste management: recycled and artificial aggregate, innovative eco-friendly binders, and life cycle assessment. Woodhead Publishing. doi:10.1016/c2019-0-04591-8.

Zhang, H. (2011). Building materials in civil engineering. Woodhead Publishing, Sawston, United Kingdom.

Claisse, P. A. (2015). Civil Engineering Materials (1st Ed.). Butterworth-Heinemann, Oxford, United Kingdom.

Abdelgader, H. S. (1996). Effect of the quantity of sand on the compressive strength of two-stage concrete. Magazine of Concrete Research, 48(4), 353–360. doi:10.1680/macr.1996.48.177.353.

Dubey, A., Chandak, R., & Yadav, P. R. K. (2012). Effect of blast furnace slag powder on compressive strength of concrete. International Journal of Scientific & Engineering Research, 3(8), 1–5.

Venkateswara Rao, A., & Srinivasa Rao, K. (2019). Effect of fly ash on strength of concrete. Circular Economy and Fly Ash Management, 125–134. doi:10.1007/978-981-15-0014-5_9.

Rasol, M. A. (2015). Effect of Silica Fume on Concrete Properties and Advantages for Kurdistan Region, Iraq. International Journal of Scientific & Engineering Research, 6(1), 170-173.

Yu, C. C., Tung, S. H., & Weng, M. C. (2008). The failure mechanism of a concrete cube. Proceedings of the 6th International Conference on Engineering Computational Technology. doi:10.4203/ccp.89.131.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-08-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Hussein Yousif Aziz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message