Assessing the Compliance of Extrusion Foamed Polystyrene Production with the Environmental Standards Requirements

Liubov Lisienkova, Lyudmila Nosova, Tatiana Shindina, Liudmila Komarova, Ekaterina Baranova, Dmitry Kozhinov

Abstract


The development of modern construction requires the use of environmentally friendly building materials, including insulating materials, to ensure the energy efficiency of buildings and structures. The purpose of the work is relevant and was to develop a methodology for assessing the compliance of extruded polystyrene foam with environmental requirements. The problem is that the certification of such materials includes an examination of their physical and mechanical properties and does not allow assessment of materials’ environmental aspects. A comprehensive approach to assessing the quality of extruded polystyrene foam is proposed, which ensures not only the technical level of material quality, but also compliance with environmental requirements. The research methodology is based on the environmental risks’ identification at all stages of production and the determination of products environmental safety criteria. Each criterion is characterized by a set of indicators, among which a representative indicator is determined. A complex indicator is proposed for assessing the environmental safety of the production of extruded foamed polystyrene. The novelty of the work lies in the algorithm for calculating the material environmental friendliness complex criterion. The process model of the extruded polystyrene foam production analyses made it possible to establish representative indicators according to the products’ environmental safety criteria. As a result of the analysis, critical operations were identified where environmental risks are likely, and representative indicators’ limit values were set in accordance with regulatory documentation. Measures have been developed to minimize the release of harmful substances during each critical operation. To improve environmental management, the system for monitoring and assessing risks in the production of extruded foamed polystyrene has been optimized. As a result, a methodology has been developed for assessing the compliance of the production of extruded polystyrene foam with environmental requirements, which is necessary for product quality certification.

 

Doi: 10.28991/CEJ-2022-08-10-018

Full Text: PDF


Keywords


Building Insulation Materials; Risks; Extruded Polystyrene Foam; Conformity Assessment; Environmental Standards.

References


Tskhovrebov, E. S., & Velichko, E. G. (2017). Ecological Safety of Construction Materials : Basic Historical Stages. Vestnik MGSU, 1(1), 26–35. doi:10.22227/1997-0935.2017.1.26-35.

Mymrin, V. A., Tolmacheva, N. A., Zelinskaya, E. V., Kurina, A. V., & Garashchenko, A. A. (2018). Research on Environmentally Friendly Waste-Based Building Materials. Vestnik MGSU, 9(9), 1143–1153. doi:10.22227/1997-0935.2018.9.1143-1153. (In Russian).

Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 155577. doi:10.1016/j.scitotenv.2022.155577.

Chidanand Vijaykumar, B., & Yerukola, P. (2022). Extruded Polystyrene (XPS) Insulation Material Market by Application (Residential Construction and Non-Residential Construction): Global Opportunity Analysis and Industry Forecast, 2020–2027. Allied Market Research. Available online: https://www.alliedmarketresearch.com/extruded-polystyrene-insulation-materials-market (accessed on August 2022).

Ramli Sulong, N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 47529. doi:10.1002/app.47529.

Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., Muraza, O., & Aditiya, H. B. (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, 73, 1352–1365. doi:10.1016/j.rser.2017.02.034.

Shaumarov, S., Adilkhodjaev, A., & Kondrazhenko, V. (2019). Experimental research of structural organization of heat-insulating structural building materials for energy efficient buildings. E3S Web of Conferences, 97, 02009. doi:10.1051/e3sconf/20199702009.

Anjum, F., Yasin Naz, M., Ghaffar, A., Kamran, K., Shukrullah, S., & Ullah, S. (2022). Sustainable insulating porous building materials for energy-saving perspective: Stones to environmentally friendly bricks. Construction and Building Materials, 318, 125930. doi:10.1016/j.conbuildmat.2021.125930.

Yoo, J., Chang, S. J., Yang, S., Wi, S., Kim, Y. U., & Kim, S. (2021). Performance of the hygrothermal behavior of the CLT wall using different types of insulation; XPS, PF board and glass wool. Case Studies in Thermal Engineering, 24, 100846. doi:10.1016/j.csite.2021.100846.

D’Agostino, D., de’ Rossi, F., Marigliano, M., Marino, C., & Minichiello, F. (2019). Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost-optimal” methodology. Journal of Building Engineering, 24, 100743. doi:10.1016/j.jobe.2019.100743.

Rumiantcev, B. M., Zhukov, A. D., Bobrova, E. Y., Romanova, I. P., Zelenshikov, D. B., & Smirnova, T. V. (2016). The systems of insulation and a methodology for assessing the durability. MATEC Web of Conferences, 86. doi:10.1051/matecconf/20168604036.

Maksimova, O. A., Mikhaylichenko, K. Y., Kurbatova, A. I., Korshunova, A. Y., & Klimakina, A. V. (2017). Ecological safety of building materials, in the production of which production and consumption waste are used (by the example of eco-concrete). Ecology and Industry of Russia, 21(9), 58–63. doi:10.18412/1816-0395-2017-9-58-63.

Bezdenejnyh, M. A., Munieva, E. Y., & Zhukov, A. D. (2017). Influence of Building Materials on the State of Ecology. Components of Scientific and Technological Progress, (4), 18-21.

Ozalp, C., Saydam, D. B., Çerçi, K. N., Hürdoğan, E., & Moran, H. (2019). Evaluation of a sample building with different type building elements in an energetic and environmental perspective. Renewable and Sustainable Energy Reviews, 115, 109386. doi:10.1016/j.rser.2019.109386.

Feng, D., & Zhao, G. (2020). Footprint assessments on organic farming to improve ecological safety in the water source areas of the South-to-North Water Diversion project. Journal of Cleaner Production, 254, 120130. doi:10.1016/j.jclepro.2020.120130.

Ketov, P. A. (2018). Development of Environmentally Safe, Energy Efficient Cellular Construction Material Corresponding To the Principles of Green Construction. Vestnik MGSU, 3(3), 368–377. doi:10.22227/1997-0935.2018.3.368-377.

Generalova, E. M., Generalov, V. P., & Kuznetsova, A. A. (2016). Modular buildings in modern construction. Procedia engineering, 153, 167-172. doi:10.1016/j.proeng.2016.08.098.

Wang, J., Du, J., Zhu, J., & Wilkie, C. A. (2002). An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polymer Degradation and Stability, 77(2), 249–252. doi:10.1016/S0141-3910(02)00055-1.

La Mantia, F. P., Morreale, M., Botta, L., Mistretta, M. C., Ceraulo, M., & Scaffaro, R. (2017). Degradation of polymer blends: A brief review. Polymer Degradation and Stability, 145, 79–92. doi:10.1016/j.polymdegradstab.2017.07.011.

Viltres, H., Odio, O. F., Lartundo-Rojas, L., & Reguera, E. (2020). Degradation study of arsenic oxides under XPS measurements. Applied Surface Science, 511, 145606. doi:10.1016/j.apsusc.2020.145606.

Zhigulina, A. Y., & Chumachenko, N. G. (2015). The Selection of Building Materials to Improve the Comfort and Ecological Safety of City Housing. Urban Construction and Architecture, 5(4), 94–99. doi:10.17673/vestnik.2015.04.12.

Kulikova, E. Y. (2016). Assessment of polymer materials environmental compatibility in underground development. Ecology and Industry of Russia, 20(3), 28–31. doi:10.18412/1816-0395-2016-3-28-31.

Khamrokulov, M. G., & Sarimsakov, A. (2019). Influence of the Content of Harmful Substances to the Food Safety of Polymer Packages. Austrian Journal of Technical and Natural Sciences, 7–8, 31–35. doi:10.29013/ajt-19-7.8-31-35.

GOST 32310-2020 (EN 13164+A.1:2015). (2020). Thermal insulation products of extruded polystyrene foam for building. Specifications. Russian Standards & Regulations, Moscow, Russia.

Patel, S. H., & Xanthos, M. (2001). Environmental issues in polymer processing: A review on volatile emissions and material/energy recovery options. Advances in Polymer Technology, 20(1), 22–41. doi:10.1002/1098-2329(200121)20:1<22::AID-ADV1002>3.0.CO;2-O.

Abeykoon, C., McMillan, A., & Nguyen, B. K. (2021). Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renewable and Sustainable Energy Reviews, 147, 111219. doi:10.1016/j.rser.2021.111219.

Chimanowsky, J. P., Cucinelli Neto, R. P., & Bruno Tavares, M. I. (2015). NMR evaluation of polystyrene nanocomposites degradated by repeated extrusion processing. Polymer Degradation and Stability, 118, 178–187. doi:10.1016/j.polymdegradstab.2015.03.022.

Elefsiniotis, P., & Wareham, D. G. (2005). ISO 14000 Environmental Management Standards: Their relation to sustainability. Journal of Professional Issues in Engineering Education and Practice, 131(3), 208–212. doi:10.1061/(ASCE)1052-3928(2005)131:3(208).

Johnson, G. (2020). The ISO 14000 EMS audit handbook. CRC Press, Boca Raton, United States. doi:10.4324/9780429273025.

Zhuk, P. M., & Zhukov, A. D. (2018). Normative legal base for the environmental assessment of building materials: Prospects for improvement. Ecology and Industry of Russia, 22(4), 52–57. doi:10.18412/1816-0395-2018-4-52-57.

Feng, X., Yang, X., Li, M., Qin, Y., Li, H., & Xie, Y. (2021). Production and method optimization of fluorescent polystyrene. Journal of Molecular Structure, 1243, 130746. doi:10.1016/j.molstruc.2021.130746.

Min, Z., Yang, H., Chen, F., & Kuang, T. (2018). Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Materials Letters, 230, 157–160. doi:10.1016/j.matlet.2018.07.094.

Yeung, C. W. S., Teo, J. Y. Q., Loh, X. J., & Lim, J. Y. C. (2021). Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. ACS Materials Letters, 3(12), 1660–1676. doi:10.1021/acsmaterialslett.1c00490.

Demirtaş, E., Özkan, H., & Nofar, M. (2018). Extrusion Foaming of High Impact Polystyrene: Effects of Processing Parameters and Materials Composition. International Journal of Material Science and Research, 1(1), 9–15. doi:10.18689/ijmsr-1000102.

Giama, E., & Papadopoulos, A. M. (2020). Benchmarking carbon footprint and circularity in production processes: The case of stonewool and extruded polysterene. Journal of Cleaner Production, 257, 120559. doi:10.1016/j.jclepro.2020.120559.

Tukhtamov, I., Beisebaev, N., Bazhanov, B., Orynbay, A., & Shampikova, A. (2020). Improving the effectiveness of explosives using a dispersed air gap. E3S Web of Conferences, 168, 00017. doi:10.1051/e3sconf/202016800017.

Hittini, W., Mourad, A. H. I., & Abu-Jdayil, B. (2019). Cleaner production of thermal insulation boards utilizing buffing dust waste. Journal of Cleaner Production, 236, 117603. doi:10.1016/j.jclepro.2019.117603.

Doroudiani, S., & Omidian, H. (2010). Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Building and Environment, 45(3), 647–654. doi:10.1016/j.buildenv.2009.08.004.

Ferella, F., Zueva, S., Innocenzi, V., Di Renzo, A., Avveduto, A., Pace, L., Tripodi, P., & Vegliò, F. (2019). New scrubber for air purification: abatement of particulate matter and treatment of the resulting wastewater. International Journal of Environmental Science and Technology, 16(3), 1677–1690. doi:10.1007/s13762-018-1826-4.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Liubov Lisienkova, Tatiana Shindina, Liudmila Komarova, Lyudmila Nosova, Dmitry Kozhinov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message