Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment

Lightweight Concrete Sustainable Construction Environmental Impact Life Cycle Impact Assessment Green Concrete.

Authors

  • Kennedy C. Onyelowe Department of Civil Engineering, Michael Okpara University of Agriculture Umudike, 440109, Umuahia,, Nigeria
  • Ahmed M. Ebid
    ahmed.abdelkhaleq@fue.edu.eg
    Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11865,, Egypt
  • Hisham A. Mahdi Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11865,, Egypt
  • Ariel Riofrio Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil,, Ecuador
  • Danial Rezazadeh Eidgahee Faculty of Civil Engineering, Semnan University, Semnan,, Iran, Islamic Republic of
  • Haci Baykara Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil,, Ecuador
  • Atefeh Soleymani Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman,, Iran, Islamic Republic of
  • Denise-Penelope N. Kontoni Department of Civil Engineering, School of Engineering, University of the Peloponnese, GR-26335 Patras,, Greece
  • Jamshid Shakeri Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj,, Iran, Islamic Republic of
  • Hashem Jahangir Department of Civil Engineering, University of Birjand, Birjand,, Iran, Islamic Republic of

Downloads

Frequent laboratory needs during the production of concrete for infrastructure development purposes are a factor of serious concern for sustainable development. In order to overcome this trend, an intelligent forecast of the concrete properties based on multiple data points collected from various concrete mixes produced and cured under different conditions is adopted. It is equally important to consider the impact of the concrete components in this attempt to take care of the environmental risks involved in this production. In this work, 192 mixes of an ultra-high-performance lightweight concrete (UHPLC) were collected from literature representing different mixes cured under different periods and laboratory conditions. These mix proportions constitute measured variables, which are curing age (A), cement content (C), fine aggregate (FAg), plasticizer (PL), and rice husk ash (RHA). The studied concrete property was the unconfined compressive strength (Fc). This exercise was necessary to reduce multiple dependence on laboratory examinations by proposing concrete strength equations. First, the life cycle assessment evaluation was conducted on the rice husk ash-based UHPLC, and the results from the 192 mixes show that the C-783 mix (87 kg/m3 RHA) has the highest score on the environmental performance evaluation, while C-300 (75 kg/m3 RHA) with life cycle indices of 289.85 kg CO2eq. Global warming potential (GWP), 0.66 kg SO2eq. Terrestrial acidification and 5.77 m3 water consumption was selected to be the optimal choice due to its good profile in the LCA and the Fc associated with the mix. Second, intelligent predictions were conducted by using six algorithms (ANN-BP), (ANN-GRG), (ANN-GA), (GP), (EPR), and (GMDH-Combi). The results show that (ANN-BP) with performance indices of R; 0.989, R2; 0.979, mean square error (MSE); 2252.55, root mean squared error (RMSE); 42.46 MPa and mean absolute percentage error (MAPE); 4.95% outclassed the other five techniques and is selected as the decisive model. However, it also compared well and outclassed previous models, which had used gene expression programming (GEP) and random forest regression (RFR) and achieved R2of 0.96 and 0.91, respectively.

 

Doi: 10.28991/CEJ-2022-08-11-03

Full Text: PDF