Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation
Downloads
Doi: 10.28991/CEJ-2022-08-11-04
Full Text: PDF
[2] Mahmood, A. A., Hussain, M. K., & Ali Mohamad, S. N. (2020). Use of palm oil fuel ash (POFA)-stabilized Sarawak peat composite for road subbase. Materials Today: Proceedings, 20, 505–511. doi:10.1016/j.matpr.2019.09.178.
[3] Riza, F. V., Rahman, I. A., & Zaidi, A. M. A. (2011). Possibility of Lime as a Stabilizer in Compressed Earth Brick (CEB). International Journal on Advanced Science, Engineering and Information Technology, 1(6), 582. doi:10.18517/ijaseit.1.6.117.
[4] Amhadi, T. S., & Assaf, G. J. (2020). Strength and permeability potentials of cement-modified desert sand for roads construction purpose. Innovative Infrastructure Solutions, 5(3), 1-10. doi:10.1007/s41062-020-00327-6.
[5] Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 767–774. doi:10.1016/j.jrmge.2016.02.004.
[6] Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549. doi:10.1016/j.sandf.2012.05.011.
[7] Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117. doi:10.1016/j.ecoleng.2009.01.004.
[8] Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., & Crawford, R. (2013). Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 928–936. doi:10.1061/(asce)gt.1943-5606.0000781.
[9] Ma, C., Chen, G., Shi, J., Zhou, H., Ren, W., & Du, Y. (2022). Improvement mechanism of water resistance and volume stability of magnesium oxychloride cement: A comparison study on the influences of various gypsum. Science of the Total Environment, 829, 154546. doi:10.1016/j.scitotenv.2022.154546.
[10] Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017). Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), 1–15. doi:10.3390/cryst7020059.
[11] Neupane, D., Yasuhara, H., Kinoshita, N., & Ando, Y. (2015). Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils and Foundations, 55(2), 447–457. doi:10.1016/j.sandf.2015.02.018.
[12] Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Optimum condition for the application of enzyme-mediated calcite precipitation technique as soil improvement method. International Journal on Advanced Science, Engineering and Information Technology, 7(6), 2145–2151. doi:10.18517/ijaseit.7.6.3425.
[13] Zeng, Y., Chen, Z., Lyu, Q., Wang, X., Du, Y., Huan, C., ... & Yan, Z. (2022). Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. Science of the Total Environment, 852, 158465. doi:10.1016/j.scitotenv.2022.158465.
[14] Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8). doi:10.3390/INFRASTRUCTURES5080066.
[15] Oktafiani, P. G., Putra, H., & Sutoyo, S. (2022). Pengaruh Dissolved Organic Carbon (DOC) Pada Efektivitas Perbaikan Tanah Gambut dengan Metode Calcite Precipitation. Jurnal Aplikasi Teknik Sipil, 20(1), 109. doi:10.12962/j2579-891x.v20i1.9637.
[16] Hardiyatmo, H. C. (2003). Mechanic Ton: E. Gadjah Mada University Press, Selman, Special Region of Yogyakarta, Indonesia. (In Indonesian).
[17] Nguyen, B. T., & Mohajerani, A. (2015). Prediction of California bearing ratio from physical properties of fine-grained soils. International Journal of Civil, Structural, Construction and Architectural Engineering, 9(2), 136-141.
[18] Erzin, Y., Türköz, D., Tuskan, Y., & Yilmaz, I. (2016). Investigations into factors influencing the CBR values of some Aegean sands. Scientia Iranica, 23(2), 420–428. doi:10.24200/sci.2016.2128.
[19] B Shirur, N., & G Hiremath, S. (2014). Establishing Relationship between CBR Value and Physical Properties of Soil. IOSR Journal of Mechanical and Civil Engineering, 11(5), 26–30. doi:10.9790/1684-11512630.
[20] Bridge Investigation Manual. (1997). Directorate general of highways. Ministry of Public Works. Ministry of Public Works, Jakarta, Indonesia.
[21] Bowles, J. E. (2001). Engineering properties of soils and their measurements (4th Ed.). McGraw Hill Education, New Delhi, India.
[22] ASTM D2947-20e1. (2020 Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D2974-20E01.
[23] ASTM D698-07. (2017). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-07.
[24] ASTM D4429-04. (2010). Standard Test Method for CBR (California Bearing Ratio) of Soils in Place. ASTM International, Pennsylvania, United States. doi:10.1520/D4429-04.
[25] Ahmad, A., Sutanto, M. H., Ahmad, N. R. B., Bujang, M., & Mohamad, M. E. (2021). The implementation of industrial byproduct in malaysian peat improvement: A sustainable soil stabilization approach. Materials, 14(23), 1–22. doi:10.3390/ma14237315.
[26] Sidhi, K., Nuryanto, H., & Hartanto, D. (2019). Study of Characteristics and Shear Strength of Peat Soil with the Addition of Type I Cement as Soil Improvement Material. 2(2), 2-9, Konfrensi Teknik Sipil, 13 November, 2019, Department of Civil Engineering, Faculty of Engineering, University of Jember, Kabupaten Jember, Indonesia. (In Indonesian).
[27] Zulkifley, M. T. M., Fatt, N. T., Konjing, Z., & Ashraf, M. A. (2016). Development of tropical lowland peat forest phasic community zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Earth Sciences Research Journal, 20(1), 1–10. doi:10.15446/esrj.v20n1.53670.
[28] Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221. doi:10.1016/j.sandf.2015.09.020.
[29] Almajed, A., Tirkolaei, H. K., Kavazanjian, E., & Hamdan, N. (2019). Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Scientific Reports, 9(1), 1–7. doi:10.1038/s41598-018-38361-1.
[30] Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49–55. doi:10.1016/j.ecoleng.2016.01.010.
[31] Nagaraj, H. B., & Suresh, M. R. (2018). Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transportation Geotechnics, 15, 29–38. doi:10.1016/j.trgeo.2018.02.004.
[32] Roy, S., & Kumar Bhalla, S. (2017). Role of Geotechnical Properties of Soil on Civil Engineering Structures. Resources and Environment, 7(4), 103–109. doi:10.5923/j.re.20170704.03.
[33] Bharath, A., Manjunatha, M., Ranjitha B., T., Reshma, T. V., & Preethi, S. (2021). Influence and correlation of maximum dry density on soaked & unsoaked CBR of soil. Materials Today: Proceedings, 47, 3998–4002. doi:10.1016/j.matpr.2021.04.232.
[34] Ramadhan, M. R., & Putra, H. (2021). Evaluation of carbonate precipitation methods for improving the strength of peat soil. IOP Conference Series: Earth and Environmental Science, 622, 012032. doi:10.1088/1755-1315/622/1/012032.
[35] Pratama, E. M., Putra, H., & Syarif, F. (2021). Application of calcite precipitation method to increase the shear strength of peat soil. IOP Conference Series: Earth and Environmental Science, 871, 012058. doi:10.1088/1755-1315/871/1/012058.
[36] MackeviÄius, R., Sliоyte, D., & Zhilkina, T. (2017). Influence of Calcite Particles on Mechanical Properties of Grouted Sandy Soil. Procedia Engineering, 172, 681–684. doi:10.1016/j.proeng.2017.02.080.
[37] Mir, S.A., & Baramjeet, E. (2018). A Study On Effect Of Saturation On Subgrade Strength. International Journal for Technological Research in Engineering, 5(11), 4339-4342.
[38] van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175. doi:10.1016/j.ecoleng.2009.03.026.
[39] Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals, 11(9). doi:10.3390/cryst11091044.
[40] Yuliet, R., Hakam, A., & Febrian, G. (2011). Uji Potensi Mengembang Pada Tanah Lempung Dengan Metoda Free Swelling Test (Studi Kasus: Tanah Lempung Limau Manih – Kota Padang). Jurnal Rekayasa Sipil (JRS-Unand), 7(1), 25. doi:10.25077/jrs.7.1.25-36.2011.(In Indonesian).
[41] Khursheed, A., Firdous, E. S., & Aiman, E. (2013). A study on effects of saturation on soil subgrade strength: a review. International Journal of Scientific Development and Research, 3(5), 573-576.
[42] Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.
[43] Prakash, K., & Sridharan, A. (2004). Free swell ratio and clay mineralogy of fine-grained soils. Geotechnical Testing Journal, 27(2), 220–225. doi:10.1520/gtj10860.
[44] Saride, S., Puppala, A. J., & Chikyala, S. R. (2013). Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85(1), 39–45. doi:10.1016/j.clay.2013.09.008.
[45] Chen, Y. gui, Sun, Z., Cui, Y. jun, Ye, W. min, & Liu, Q. hua. (2019). Effect of cement solutions on the swelling pressure of compacted GMZ bentonite at different temperatures. Construction and Building Materials, 229(116872). doi:10.1016/j.conbuildmat.2019.116872.
[46] Ferber, V., Auriol, J. C., Cui, Y. J., & Magnan, J. P. (2009). On the swelling potential of compacted high plasticity clays. Engineering Geology, 104(3–4), 200–210. doi:10.1016/j.enggeo.2008.10.008.
[47] Putra, H., Yasuhara, H., Kinoshita, N., . E., & Sudibyo, T. (2018). Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique. Civil Engineering Dimension, 20(2), 91–95. doi:10.9744/ced.20.2.91-95.
[48] Mohd Yunus, N. Z., Wanatowski, D., & Stace, L. R. (2013). The influence of chloride salts on compressibility behaviour of lime-treated organic clay. International Journal of GEOMATE, 5(1), 640–646. doi:10.21660/2013.9.3143.
[49] Felicetti, M. A., Piantino, F., Coury, J. R., & Aguiar, M. L. (2008). Influence of removal time and particle size on the particle substrate adhesion force. Brazilian Journal of Chemical Engineering, 25(1), 71–82. doi:10.1590/S0104-66322008000100009.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
