Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation

Heriansyah Putra, Irgie Yudhistira

Abstract


Due to its high organic matter, moisture content, and low bearing capacity, peat soil needs to be stabilized for use as a subgrade. The soybean crude urease calcite precipitation (SCU-CP) method is a grouting technique using carbonate precipitation and soybean as a biocatalyst. This study aims to analyze the effect of the SCU-CP method and soil density on the California bearing ratio (CBR) value to obtain the best stabilization alternative for reducing the field’s compaction energy. The CBR test was conducted in both soaked and unsoaked conditions. The study was conducted with variations of 50%, 70%, and 90% density of Standard Proctor and used grouting treatment with a combination of optimum SCU-CP solution for the treated samples. The results showed a significant increase in CBR, with an average increase of more than two times compared to untreated samples. In terms of compaction effort, a density of 70% Proctor in unsoaked conditions with SCU-CP treatment is the best alternative. However, considering the soil saturation level and the swelling of the subgrade layer, 90% proctor density with SCU-CP treatment can be recommended as a stabilization method without dewatering. This research concluded that the SCU-CP method could improve the CBR value of peat soil.

 

Doi: 10.28991/CEJ-2022-08-11-04

Full Text: PDF


Keywords


Calcite Precipitation; CBR; Peat Soil; Soybean; Subgrade.

References


Nigeria Federal Ministry of Works (2013). Highway Manual Part 1: Design (2nd Ed.). Federal Republic of Nigeria, Abuja, Nigeria.

Mahmood, A. A., Hussain, M. K., & Ali Mohamad, S. N. (2020). Use of palm oil fuel ash (POFA)-stabilized Sarawak peat composite for road subbase. Materials Today: Proceedings, 20, 505–511. doi:10.1016/j.matpr.2019.09.178.

Riza, F. V., Rahman, I. A., & Zaidi, A. M. A. (2011). Possibility of Lime as a Stabilizer in Compressed Earth Brick (CEB). International Journal on Advanced Science, Engineering and Information Technology, 1(6), 582. doi:10.18517/ijaseit.1.6.117.

Amhadi, T. S., & Assaf, G. J. (2020). Strength and permeability potentials of cement-modified desert sand for roads construction purpose. Innovative Infrastructure Solutions, 5(3), 1-10. doi:10.1007/s41062-020-00327-6.

Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 767–774. doi:10.1016/j.jrmge.2016.02.004.

Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549. doi:10.1016/j.sandf.2012.05.011.

Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117. doi:10.1016/j.ecoleng.2009.01.004.

Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., & Crawford, R. (2013). Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 928–936. doi:10.1061/(asce)gt.1943-5606.0000781.

Ma, C., Chen, G., Shi, J., Zhou, H., Ren, W., & Du, Y. (2022). Improvement mechanism of water resistance and volume stability of magnesium oxychloride cement: A comparison study on the influences of various gypsum. Science of the Total Environment, 829, 154546. doi:10.1016/j.scitotenv.2022.154546.

Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017). Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), 1–15. doi:10.3390/cryst7020059.

Neupane, D., Yasuhara, H., Kinoshita, N., & Ando, Y. (2015). Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils and Foundations, 55(2), 447–457. doi:10.1016/j.sandf.2015.02.018.

Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Optimum condition for the application of enzyme-mediated calcite precipitation technique as soil improvement method. International Journal on Advanced Science, Engineering and Information Technology, 7(6), 2145–2151. doi:10.18517/ijaseit.7.6.3425.

Zeng, Y., Chen, Z., Lyu, Q., Wang, X., Du, Y., Huan, C., ... & Yan, Z. (2022). Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. Science of the Total Environment, 852, 158465. doi:10.1016/j.scitotenv.2022.158465.

Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8). doi:10.3390/INFRASTRUCTURES5080066.

Oktafiani, P. G., Putra, H., & Sutoyo, S. (2022). Pengaruh Dissolved Organic Carbon (DOC) Pada Efektivitas Perbaikan Tanah Gambut dengan Metode Calcite Precipitation. Jurnal Aplikasi Teknik Sipil, 20(1), 109. doi:10.12962/j2579-891x.v20i1.9637.

Hardiyatmo, H. C. (2003). Mechanic Ton: E. Gadjah Mada University Press, Selman, Special Region of Yogyakarta, Indonesia. (In Indonesian).

Nguyen, B. T., & Mohajerani, A. (2015). Prediction of California bearing ratio from physical properties of fine-grained soils. International Journal of Civil, Structural, Construction and Architectural Engineering, 9(2), 136-141.

Erzin, Y., Türköz, D., Tuskan, Y., & Yilmaz, I. (2016). Investigations into factors influencing the CBR values of some Aegean sands. Scientia Iranica, 23(2), 420–428. doi:10.24200/sci.2016.2128.

B Shirur, N., & G Hiremath, S. (2014). Establishing Relationship between CBR Value and Physical Properties of Soil. IOSR Journal of Mechanical and Civil Engineering, 11(5), 26–30. doi:10.9790/1684-11512630.

Bridge Investigation Manual. (1997). Directorate general of highways. Ministry of Public Works. Ministry of Public Works, Jakarta, Indonesia.

Bowles, J. E. (2001). Engineering properties of soils and their measurements (4th Ed.). McGraw Hill Education, New Delhi, India.

ASTM D2947-20e1. (2020 Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D2974-20E01.

ASTM D698-07. (2017). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-07.

ASTM D4429-04. (2010). Standard Test Method for CBR (California Bearing Ratio) of Soils in Place. ASTM International, Pennsylvania, United States. doi:10.1520/D4429-04.

Ahmad, A., Sutanto, M. H., Ahmad, N. R. B., Bujang, M., & Mohamad, M. E. (2021). The implementation of industrial byproduct in malaysian peat improvement: A sustainable soil stabilization approach. Materials, 14(23), 1–22. doi:10.3390/ma14237315.

Sidhi, K., Nuryanto, H., & Hartanto, D. (2019). Study of Characteristics and Shear Strength of Peat Soil with the Addition of Type I Cement as Soil Improvement Material. 2(2), 2-9, Konfrensi Teknik Sipil, 13 November, 2019, Department of Civil Engineering, Faculty of Engineering, University of Jember, Kabupaten Jember, Indonesia. (In Indonesian).

Zulkifley, M. T. M., Fatt, N. T., Konjing, Z., & Ashraf, M. A. (2016). Development of tropical lowland peat forest phasic community zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Earth Sciences Research Journal, 20(1), 1–10. doi:10.15446/esrj.v20n1.53670.

Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221. doi:10.1016/j.sandf.2015.09.020.

Almajed, A., Tirkolaei, H. K., Kavazanjian, E., & Hamdan, N. (2019). Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Scientific Reports, 9(1), 1–7. doi:10.1038/s41598-018-38361-1.

Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49–55. doi:10.1016/j.ecoleng.2016.01.010.

Nagaraj, H. B., & Suresh, M. R. (2018). Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transportation Geotechnics, 15, 29–38. doi:10.1016/j.trgeo.2018.02.004.

Roy, S., & Kumar Bhalla, S. (2017). Role of Geotechnical Properties of Soil on Civil Engineering Structures. Resources and Environment, 7(4), 103–109. doi:10.5923/j.re.20170704.03.

Bharath, A., Manjunatha, M., Ranjitha B., T., Reshma, T. V., & Preethi, S. (2021). Influence and correlation of maximum dry density on soaked & unsoaked CBR of soil. Materials Today: Proceedings, 47, 3998–4002. doi:10.1016/j.matpr.2021.04.232.

Ramadhan, M. R., & Putra, H. (2021). Evaluation of carbonate precipitation methods for improving the strength of peat soil. IOP Conference Series: Earth and Environmental Science, 622, 012032. doi:10.1088/1755-1315/622/1/012032.

Pratama, E. M., Putra, H., & Syarif, F. (2021). Application of calcite precipitation method to increase the shear strength of peat soil. IOP Conference Series: Earth and Environmental Science, 871, 012058. doi:10.1088/1755-1315/871/1/012058.

Mackevičius, R., Sližyte, D., & Zhilkina, T. (2017). Influence of Calcite Particles on Mechanical Properties of Grouted Sandy Soil. Procedia Engineering, 172, 681–684. doi:10.1016/j.proeng.2017.02.080.

Mir, S.A., & Baramjeet, E. (2018). A Study On Effect Of Saturation On Subgrade Strength. International Journal for Technological Research in Engineering, 5(11), 4339-4342.

van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175. doi:10.1016/j.ecoleng.2009.03.026.

Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals, 11(9). doi:10.3390/cryst11091044.

Yuliet, R., Hakam, A., & Febrian, G. (2011). Uji Potensi Mengembang Pada Tanah Lempung Dengan Metoda Free Swelling Test (Studi Kasus: Tanah Lempung Limau Manih – Kota Padang). Jurnal Rekayasa Sipil (JRS-Unand), 7(1), 25. doi:10.25077/jrs.7.1.25-36.2011.(In Indonesian).

Khursheed, A., Firdous, E. S., & Aiman, E. (2013). A study on effects of saturation on soil subgrade strength: a review. International Journal of Scientific Development and Research, 3(5), 573-576.

Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.

Prakash, K., & Sridharan, A. (2004). Free swell ratio and clay mineralogy of fine-grained soils. Geotechnical Testing Journal, 27(2), 220–225. doi:10.1520/gtj10860.

Saride, S., Puppala, A. J., & Chikyala, S. R. (2013). Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85(1), 39–45. doi:10.1016/j.clay.2013.09.008.

Chen, Y. gui, Sun, Z., Cui, Y. jun, Ye, W. min, & Liu, Q. hua. (2019). Effect of cement solutions on the swelling pressure of compacted GMZ bentonite at different temperatures. Construction and Building Materials, 229(116872). doi:10.1016/j.conbuildmat.2019.116872.

Ferber, V., Auriol, J. C., Cui, Y. J., & Magnan, J. P. (2009). On the swelling potential of compacted high plasticity clays. Engineering Geology, 104(3–4), 200–210. doi:10.1016/j.enggeo.2008.10.008.

Putra, H., Yasuhara, H., Kinoshita, N., . E., & Sudibyo, T. (2018). Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique. Civil Engineering Dimension, 20(2), 91–95. doi:10.9744/ced.20.2.91-95.

Mohd Yunus, N. Z., Wanatowski, D., & Stace, L. R. (2013). The influence of chloride salts on compressibility behaviour of lime-treated organic clay. International Journal of GEOMATE, 5(1), 640–646. doi:10.21660/2013.9.3143.

Felicetti, M. A., Piantino, F., Coury, J. R., & Aguiar, M. L. (2008). Influence of removal time and particle size on the particle substrate adhesion force. Brazilian Journal of Chemical Engineering, 25(1), 71–82. doi:10.1590/S0104-66322008000100009.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Heriansyah Putra, Irgie Yudhistira

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message