The Effect of Short-Term Aging on Warm Mix Asphalt Moisture Performance
Vol. 8 No. 12 (2022): December
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-12-09
Full Text: PDF
Al-Fayyadh, Z. T., & Al-Mosawe, H. (2022). The Effect of Short-Term Aging on Warm Mix Asphalt Moisture Performance. Civil Engineering Journal, 8(12), 2789–2802. https://doi.org/10.28991/CEJ-2022-08-12-09
[1] Hossain, M., & Muromachi, Y. (2012). A Bayesian network-based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accident Analysis & Prevention, 45, 373-381. doi:10.1016/j.aap.2011.08.004.
[2] Razzaq Alnuami, S. A., & Sarsam, S. I. (2020). Assessing the Influence of Moisture Damage under Repeated Load on Multilayer Interface Bond Strength of Asphalt Concrete. Journal of Engineering, 26(11), 21-42. doi:10.31026/j.eng.2020.11.02.
[3] Nikolaides, A. (2015). Highway engineering: pavements, materials and control of quality. CRC Press, Boca Raton, United States. doi:10.1201/b17690.
[4] Samor, Z. A., & Sarsam, S. I. (2021). Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete. Journal of Engineering, 27(2), 59–72. doi:10.31026/j.eng.2021.02.05.
[5] Albayati, A. H., Al-Mosawe, H. M., Allawi, A. A., & Oukaili, N. (2018). Moisture Susceptibility of Sustainable Warm Mix Asphalt. Advances in Civil Engineering, 2018. doi:10.1155/2018/3109435.
[6] Abdullah, M. E., Zamharia, K., Buharia, R., Bakara, S. A., Kamaruddina, N., Nayanb, N., M. Haininc, N. A. H., & S. Hassanc, N. I. M. Y. (2014). Warm Mix Asphalt Technology: A Review. Jurnal Teknologi, 71(3), 39–52.
[7] Bonaquist, R. (2011). Mix Design Practices for Warm-Mix Asphalt. Transportation Research Board, American Association of State Highway and transportation Officials, Washington, United States. doi:10.17226/14488.
[8] Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. doi:10.1016/j.jclepro.2020.120817.
[9] Sarsam, S. I. (2019). Comparative Assessment of Tensile and Shear Behavior of Cold, Warm and Hot Mix Asphalt Concrete. International Journal of Transportation Engineering and Traffic System, 5(2), 39-47. doi:10.37628/jtets.v5i2.557
[10] Abdul Mahdi, Z. alabidine N., & Sarsam, S. I. (2019). Moisture Damage of Warm Mix Asphalt Concrete. Journal of Engineering, 25(6), 101–116. doi:10.31026/j.eng.2019.06.08.
[11] Zhao, S., Huang, B., Shu, X., & Woods, M. (2013). Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction and Building Materials, 44, 92–100. doi:10.1016/j.conbuildmat.2013.03.010.
[12] Abed, A., Thom, N., Lo Presti, D., & Airey, G. (2020). Thermo-rheological analysis of WMA-additive modified binders. Materials and Structures/Materiaux et Constructions, 53(3), 1-13. doi:10.1617/s11527-020-01480-1.
[13] Rondón-Quintana, H. A., Fernández-Gómez, W. D., & Carlos Alfonso Zafra-Mejía. (2016). Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Revista Facultad de Ingenieria, 2016(78), 129–138. doi:10.17533/udea.redin.n78a17.
[14] Namaa, M. M., Qasim, Z. I., & AlHelo, K. H. I. (2022). Effect of Styrene Butadiene Styrene on Properties of Open-Graded Asphalt Concrete Mixtures. Al-Nahrain Journal for Engineering Sciences, 25(2), 67–75. doi:10.29194/njes.25020067.
[15] Wang, Z., Dai, Q., Porter, D., & You, Z. (2016). Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams. Construction and Building Materials, 126, 1012-1019. doi:10.1016/j.conbuildmat.2016.09.039.
[16] Ismael, S. A. M., & Ismael, M. Q. (2019). Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journal, 5(12), 2535–2553. doi:10.28991/cej-2019-03091431.
[17] Mohammed, S. F., & Ismael, M. Q. (2021). Effect of polypropylene fibers on moisture susceptibility of warm mix asphalt. Civil Engineering Journal (Iran), 7(6), 988–997. doi:10.28991/cej-2021-03091704.
[18] Kanitpong, K., & Bahia, H. U. (2008). Evaluation of HMA moisture damage in Wisconsin as it relates to pavement performance. International Journal of Pavement Engineering, 9(1), 9-17. doi:10.1080/10298430600965122.
[19] Ali, S. H., & Ismael, M. Q. (2021). Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime. Al-Qadisiyah Journal for Engineering Sciences, 13(4), 274–283. doi:10.30772/qjes.v13i4.681.
[20] Hashimi, S. N., Ahadi, S., Aslan, H., & Kuyumcu, Z. C. (2020). Investigation of the effect of Crumb Rubber Additive on the Fracture of characteristics of asphalt mixtures in control and asphalt rubber mixtures. Academic Perspective Procedia, 3(1), 715–725. doi:10.33793/acperpro.03.01.127.
[21] Aditya Arya, V., & Prakash, S. (2018). Crumb Rubber as Asphalt Modifier. International Journal of Advanced Research, 6(1), 865–868. doi:10.21474/ijar01/6295.
[22] Natalia, C. A., Bressi, S., Thomas, G., & Losa, M. (2018). Effect of crumb rubber in dry process on mix design of asphalt mixtures. 13th Conference of the International Society for Asphalt Pavements (ISAP), 19-21 June, 2018, Fortaleza, Brazil.
[23] Abdul Hassan, N., Airey, G. D., Putra Jaya, R., Mashros, N., & A. Aziz, Md. M. (2014). A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. Jurnal Teknologi, 70(4). doi:10.11113/jt.v70.3501.
[24] Al Qadi, A. N. S., Alhasanat, M. B. A., & Haddad, M. (2016). Effect of crumb rubber as coarse and fine aggregates on the properties of asphalt concrete. American Journal of Engineering and Applied Sciences, 9(3), 558–564. doi:10.3844/ajeassp.2016.558.564.
[25] Neto, S. A. D., Farias, M. M. D., Mello, L. G. R., Pereira, P. A., & Pais, J. C. (2005). The use of crumb rubber in asphalt mixtures using the dry process. 2005 International Symposium on Pavement Recycling, 14-16 March, 2005, Sí£o Paulo, Brazil.
[26] Kim, H. H., Lee, M. S., & Lee, S. J. (2016). Identification of the microstructural components of crumb rubber modified asphalt binder (CRMA) and the feasibility of using environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-Ray spectroscopy (EDX). International Journal of Highway Engineering, 18(6), 41–50. doi:10.7855/ijhe.2016.18.6.041.
[27] Baumgardner, G., Hand, A. J., & Aschenbrener, T. B. (2020). Resource responsible use of recycled tire rubber in asphalt pavements. Publication No. FHWA-HIF-20-043, U.S. Department of Transportation, Federal Highway Administration, Washington, United States.
[28] Qadir Ismael, M. (2009). Effect of Reclaimed Scrap Rubber on Some Properties of Asphalt Cement and Asphalt Concrete Mixture. The 6th Engineering Conference, 5-7 April, 2009, College of Engineering, University of Baghdad, Baghdad, Iraq.
[29] Gibreil, H. A. A., & Feng, C. P. (2017). Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Construction and Building Materials, 142, 101–108. doi:10.1016/j.conbuildmat.2017.03.062.
[30] Abdul Hassan, N., Abdulhussein, A., Zul Hanif Mahmud, M., Asniza M. A., N., Athma Mohd Shukry, N., Mashros, N., Putra Jaya, R., & Md. Yusoff, N. I. (2019). Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process. IOP Conference Series: Earth and Environmental Science, 220, 012009. doi:10.1088/1755-1315/220/1/012009.
[31] SCRB-R9 (2003). Standard Specifications for road and Bridges. Section R/9. Hot-Mix Asphaltic Concrete Pavement, Iraqi General Standards, Baghdad, Iraq.
[32] ASTM D5-06 (2017). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005-06.
[33] ASTM D113-99 (2010). Standard Test Method for Ductility of bituminous materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-99.
[34] ASTM D92-18 (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[35] ASTM D 36-06 (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D00360-06.
[36] ASTM D4402-87. (2000). Standard Test Method for Viscosity Determinations of Unfilled Asphalts Using the Brookfield Thermosel Apparatus. STM International, Pennsylvania, United States.
[37] ASTM D 70-18a. (2021). Standard Test Method for Density of Semi-Solid Bituminous Materials Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.
[38] ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
[39] ASTM C28/C28M-10(2020). (2020). Standard Specification for Gypsum Plasters. ASTM International, Pennsylvania, United States. doi:10.1520/C0028_C0028M-10R20.
[40] ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.
[41] ASTM C88-13. (2018). Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-13.
[42] ASTM D6926-20. (2020). Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/D6926-20.
[43] ASTM D4867/D4867M-04. (2010). Standard Test Method for effect of moisture on Asphalt Concrete Paving Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D4867_D4867M-04.
[44] ASTM D6931-17. (2017). Standard Test Method for indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6931-17.
[45] Albayati, A. H., & Abduljabbar, M. H. (2019). The simulation of short-term aging based on the moisture susceptibility of asphalt concrete mixtures. Results in Engineering, 2, 100012. doi:10.1016/j.rineng.2019.100012.
[46] Lolly, R. (2013). Evaluation of short term aging effect of hot mix asphalt due to elevated temperatures and extended aging time. Master Thesis, Arizona State University, Tempe, United States.
[47] Mogawer, W., Austerman, A., & Bahia, H. (2011). Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures. Transportation Research Record, 2209, 52–60. doi:10.3141/2209-07.
[2] Razzaq Alnuami, S. A., & Sarsam, S. I. (2020). Assessing the Influence of Moisture Damage under Repeated Load on Multilayer Interface Bond Strength of Asphalt Concrete. Journal of Engineering, 26(11), 21-42. doi:10.31026/j.eng.2020.11.02.
[3] Nikolaides, A. (2015). Highway engineering: pavements, materials and control of quality. CRC Press, Boca Raton, United States. doi:10.1201/b17690.
[4] Samor, Z. A., & Sarsam, S. I. (2021). Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete. Journal of Engineering, 27(2), 59–72. doi:10.31026/j.eng.2021.02.05.
[5] Albayati, A. H., Al-Mosawe, H. M., Allawi, A. A., & Oukaili, N. (2018). Moisture Susceptibility of Sustainable Warm Mix Asphalt. Advances in Civil Engineering, 2018. doi:10.1155/2018/3109435.
[6] Abdullah, M. E., Zamharia, K., Buharia, R., Bakara, S. A., Kamaruddina, N., Nayanb, N., M. Haininc, N. A. H., & S. Hassanc, N. I. M. Y. (2014). Warm Mix Asphalt Technology: A Review. Jurnal Teknologi, 71(3), 39–52.
[7] Bonaquist, R. (2011). Mix Design Practices for Warm-Mix Asphalt. Transportation Research Board, American Association of State Highway and transportation Officials, Washington, United States. doi:10.17226/14488.
[8] Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. doi:10.1016/j.jclepro.2020.120817.
[9] Sarsam, S. I. (2019). Comparative Assessment of Tensile and Shear Behavior of Cold, Warm and Hot Mix Asphalt Concrete. International Journal of Transportation Engineering and Traffic System, 5(2), 39-47. doi:10.37628/jtets.v5i2.557
[10] Abdul Mahdi, Z. alabidine N., & Sarsam, S. I. (2019). Moisture Damage of Warm Mix Asphalt Concrete. Journal of Engineering, 25(6), 101–116. doi:10.31026/j.eng.2019.06.08.
[11] Zhao, S., Huang, B., Shu, X., & Woods, M. (2013). Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction and Building Materials, 44, 92–100. doi:10.1016/j.conbuildmat.2013.03.010.
[12] Abed, A., Thom, N., Lo Presti, D., & Airey, G. (2020). Thermo-rheological analysis of WMA-additive modified binders. Materials and Structures/Materiaux et Constructions, 53(3), 1-13. doi:10.1617/s11527-020-01480-1.
[13] Rondón-Quintana, H. A., Fernández-Gómez, W. D., & Carlos Alfonso Zafra-Mejía. (2016). Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Revista Facultad de Ingenieria, 2016(78), 129–138. doi:10.17533/udea.redin.n78a17.
[14] Namaa, M. M., Qasim, Z. I., & AlHelo, K. H. I. (2022). Effect of Styrene Butadiene Styrene on Properties of Open-Graded Asphalt Concrete Mixtures. Al-Nahrain Journal for Engineering Sciences, 25(2), 67–75. doi:10.29194/njes.25020067.
[15] Wang, Z., Dai, Q., Porter, D., & You, Z. (2016). Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams. Construction and Building Materials, 126, 1012-1019. doi:10.1016/j.conbuildmat.2016.09.039.
[16] Ismael, S. A. M., & Ismael, M. Q. (2019). Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journal, 5(12), 2535–2553. doi:10.28991/cej-2019-03091431.
[17] Mohammed, S. F., & Ismael, M. Q. (2021). Effect of polypropylene fibers on moisture susceptibility of warm mix asphalt. Civil Engineering Journal (Iran), 7(6), 988–997. doi:10.28991/cej-2021-03091704.
[18] Kanitpong, K., & Bahia, H. U. (2008). Evaluation of HMA moisture damage in Wisconsin as it relates to pavement performance. International Journal of Pavement Engineering, 9(1), 9-17. doi:10.1080/10298430600965122.
[19] Ali, S. H., & Ismael, M. Q. (2021). Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime. Al-Qadisiyah Journal for Engineering Sciences, 13(4), 274–283. doi:10.30772/qjes.v13i4.681.
[20] Hashimi, S. N., Ahadi, S., Aslan, H., & Kuyumcu, Z. C. (2020). Investigation of the effect of Crumb Rubber Additive on the Fracture of characteristics of asphalt mixtures in control and asphalt rubber mixtures. Academic Perspective Procedia, 3(1), 715–725. doi:10.33793/acperpro.03.01.127.
[21] Aditya Arya, V., & Prakash, S. (2018). Crumb Rubber as Asphalt Modifier. International Journal of Advanced Research, 6(1), 865–868. doi:10.21474/ijar01/6295.
[22] Natalia, C. A., Bressi, S., Thomas, G., & Losa, M. (2018). Effect of crumb rubber in dry process on mix design of asphalt mixtures. 13th Conference of the International Society for Asphalt Pavements (ISAP), 19-21 June, 2018, Fortaleza, Brazil.
[23] Abdul Hassan, N., Airey, G. D., Putra Jaya, R., Mashros, N., & A. Aziz, Md. M. (2014). A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. Jurnal Teknologi, 70(4). doi:10.11113/jt.v70.3501.
[24] Al Qadi, A. N. S., Alhasanat, M. B. A., & Haddad, M. (2016). Effect of crumb rubber as coarse and fine aggregates on the properties of asphalt concrete. American Journal of Engineering and Applied Sciences, 9(3), 558–564. doi:10.3844/ajeassp.2016.558.564.
[25] Neto, S. A. D., Farias, M. M. D., Mello, L. G. R., Pereira, P. A., & Pais, J. C. (2005). The use of crumb rubber in asphalt mixtures using the dry process. 2005 International Symposium on Pavement Recycling, 14-16 March, 2005, Sí£o Paulo, Brazil.
[26] Kim, H. H., Lee, M. S., & Lee, S. J. (2016). Identification of the microstructural components of crumb rubber modified asphalt binder (CRMA) and the feasibility of using environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-Ray spectroscopy (EDX). International Journal of Highway Engineering, 18(6), 41–50. doi:10.7855/ijhe.2016.18.6.041.
[27] Baumgardner, G., Hand, A. J., & Aschenbrener, T. B. (2020). Resource responsible use of recycled tire rubber in asphalt pavements. Publication No. FHWA-HIF-20-043, U.S. Department of Transportation, Federal Highway Administration, Washington, United States.
[28] Qadir Ismael, M. (2009). Effect of Reclaimed Scrap Rubber on Some Properties of Asphalt Cement and Asphalt Concrete Mixture. The 6th Engineering Conference, 5-7 April, 2009, College of Engineering, University of Baghdad, Baghdad, Iraq.
[29] Gibreil, H. A. A., & Feng, C. P. (2017). Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Construction and Building Materials, 142, 101–108. doi:10.1016/j.conbuildmat.2017.03.062.
[30] Abdul Hassan, N., Abdulhussein, A., Zul Hanif Mahmud, M., Asniza M. A., N., Athma Mohd Shukry, N., Mashros, N., Putra Jaya, R., & Md. Yusoff, N. I. (2019). Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process. IOP Conference Series: Earth and Environmental Science, 220, 012009. doi:10.1088/1755-1315/220/1/012009.
[31] SCRB-R9 (2003). Standard Specifications for road and Bridges. Section R/9. Hot-Mix Asphaltic Concrete Pavement, Iraqi General Standards, Baghdad, Iraq.
[32] ASTM D5-06 (2017). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005-06.
[33] ASTM D113-99 (2010). Standard Test Method for Ductility of bituminous materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-99.
[34] ASTM D92-18 (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[35] ASTM D 36-06 (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D00360-06.
[36] ASTM D4402-87. (2000). Standard Test Method for Viscosity Determinations of Unfilled Asphalts Using the Brookfield Thermosel Apparatus. STM International, Pennsylvania, United States.
[37] ASTM D 70-18a. (2021). Standard Test Method for Density of Semi-Solid Bituminous Materials Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.
[38] ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
[39] ASTM C28/C28M-10(2020). (2020). Standard Specification for Gypsum Plasters. ASTM International, Pennsylvania, United States. doi:10.1520/C0028_C0028M-10R20.
[40] ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.
[41] ASTM C88-13. (2018). Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-13.
[42] ASTM D6926-20. (2020). Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/D6926-20.
[43] ASTM D4867/D4867M-04. (2010). Standard Test Method for effect of moisture on Asphalt Concrete Paving Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D4867_D4867M-04.
[44] ASTM D6931-17. (2017). Standard Test Method for indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6931-17.
[45] Albayati, A. H., & Abduljabbar, M. H. (2019). The simulation of short-term aging based on the moisture susceptibility of asphalt concrete mixtures. Results in Engineering, 2, 100012. doi:10.1016/j.rineng.2019.100012.
[46] Lolly, R. (2013). Evaluation of short term aging effect of hot mix asphalt due to elevated temperatures and extended aging time. Master Thesis, Arizona State University, Tempe, United States.
[47] Mogawer, W., Austerman, A., & Bahia, H. (2011). Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures. Transportation Research Record, 2209, 52–60. doi:10.3141/2209-07.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
