Implementing the Calculations and Characterization of Underground Coal Gasification using Data Analytic Method

Mardhani Riasetiawan, Ferian Anggara, Vanisa Syahra


Indonesian coal production nowadays has reached 63% of total production, which means this high demand will also produce a lot of data. This high demand needs to be innovated as a new alternative energy based on coal production, Underground Coal Gasification (UCG). The coal in this alternative energy source is used to turn the solid coal into gas. Coal mining data has a lot of variables that might be difficult to process manually. Our automatic system will help the users, especially the geologists, identify which coal seams have the potential to be developed as the UCG. We developed the system using a python-based coding system and required data standardization to ease the built-in code reading and process all the required steps to identify the UCG. We implemented the calculation and characterization regarding the calorific value (ADB), proximate, and ultimate analysis from the provided data to find the needed variables for the UCG analytics system. The automatic system will allow the user to choose the interesting borehole that they want to identify. Our system then shows the initial UCG recommendation layer for the next analysis. From our experiment, our system finally found that at the depth of 260 meters, Borehole MJ02 has the potential as the initial guest of the recommendation layer of the UCG development.


Doi: 10.28991/CEJ-SP2021-07-012

Full Text: PDF


Underground Coal Gasification; Data Analytic; Characterization; Calculation; Geological.


DEN. (2019). Indonesia Energy Outlook 2019. National Energy Council. Jakarta, Indonesia. Available online: (accessed on March 2022).

Thomas, G., Sheridan, C., & Holm, P. E. (2021). A critical review of phytoremediation for acid mine drainage-impacted environments. Science of the Total Environment, 152230. doi:10.1016/j.scitotenv.2021.152230.

PSDMBP. (2020). Indonesia's Mineral, Coal and Geothermal Resources and Reserves Balance in 2020”. Center for Mineral, Coal, and Geothermal Resources from the Ministry of Energy and Mineral Resources. Geological Agency Indonesia, Bandung, Indonesia.

Hattingh, L. (2008). Underground coal gasification. Sasol Mining, Johannesburg, South Africa. Available online: (accessed on March 2022).

Ishtay, A., & Al-Dabbas, M. A. (2022). Magnetic Contactless Crank-rocker Machine. Emerging Science Journal, 6(2), 295-305. doi:10.28991/ESJ-2022-06-02-07.

Jarral, M., Kumar, D., Saeed, A., Larik, Z., Saleem, M., & Shabbir, M. (2012). Underground Coal Gasification and Power Generation; Healthy Safety and Environmental Aspects. 45th IEP Convention Institute of Engineers Pakistan Karachi Center, Presented in the seminar “Thar Coal” 21st - 22nd December 2012, Pakistan.

Shafirovich, E., & Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865–7875. doi:10.1021/ie801569r.

Dwitama, E. P., Ramdhani, M. R., & Ulfa, R. M. (2021). Evaluasi Pendahuluan Potensi Underground Coal Gasification Di Cekungan Sumatra Selatan: Studi Kasus Batubara Formasi Muara Enim. Buletin Sumber Daya Geologi, 16(2), 83-97. doi:10.47599/bsdg.v16i2.326 (In Indonesian).

Odeh, A. O. (2017). Pyrolysis: Pathway to Coal Clean Technologies. Pyrolysis, 305–317, IntechOpen, London, United Kingdom. doi:10.5772/67287.

Hanchate, N., Ramani, S., Mathpati, C. S., & Dalvi, V. H. (2021). Biomass gasification using dual fluidized bed gasification systems: A review. Journal of Cleaner Production, 280, 123148. doi:10.1016/j.jclepro.2020.123148.

Matsuoka, K., Akahane, T., Aso, H., Sharma, A., & Tomita, A. (2008). The size of polyaromatic layer of coal char estimated from elemental analysis data. Fuel, 87(4–5), 539–545. doi:10.1016/j.fuel.2007.03.001.

McBeath, A. V., Smernik, R. J., Schneider, M. P. W., Schmidt, M. W. I., & Plant, E. L. (2011). Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Organic Geochemistry, 42(10), 1194–1202. doi:10.1016/j.orggeochem.2011.08.008.

Neavel, R. C. (1981). Origin, Petrography, and Classification of Coal. Chemistry of Coal Utilization (2nd Ed.), 91-158, Wiley, New York, United States.

Bielowicz, B., & Kasiński, J. R. (2014). The possibility of underground gasification of lignite from Polish deposits. International Journal of Coal Geology, 131, 304-318. doi:10.1016/j.coal.2014.06.025.

Rasheed, R., Javed, H., Rizwan, A., Sharif, F., Yasar, A., Tabinda, A. B., ... & Su, Y. (2021). Life cycle assessment of a cleaner supercritical coal-fired power plant. Journal of Cleaner Production, 279, 123869. doi:10.1016/j.jclepro.2020.123869.

Couch, G. R. (2009). Underground coal gasification. IEA Clean Coal Centre, London, United Kingdom. Available online: (accessed on March 2022).

Sury, M., White, M., Kirton, J., Carr, P., Woodbridge, R., Mostade, M., Rendell, N. (2004). Review Environmental Issues of Underground Coal Gasification. Report No. COAL R272 DTI/Pub URN 04/1880, WS Atkins Consultants, Birmingham, United Kingdom.

Burton, E. A., Upadhye, R., & Friedmann, S. J. (2019). Best practices in underground coal gasification (No. LLNL-TR-225331). Lawrence Livermore National Lab (LLNL), Livermore, California, United States.

Madiutomo, N., Hermawan, W., & Pamungkas, M. (2021). The effect of rock permeability value on groundwater influx in underground coal gasification reactor. In IOP Conference Series: Earth and Environmental Science 882(1), 012054, IOP Publishing. doi:10.1088/1755-1315/882/1/012054.

Full Text: PDF

DOI: 10.28991/CEJ-SP2021-07-012


  • There are currently no refbacks.

Copyright (c) 2022 Mardhani Riasetiawan, Ferian Anggara, Vanisa Syahra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.