Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process
Abstract
Doi: 10.28991/CEJ-SP2023-09-01
Full Text: PDF
Keywords
References
Saleem, A. A., & Ismael, M. Q. (2020). Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal (Iran), 6(9), 1726–1738. doi:10.28991/cej-2020-03091578.
Albayati, A. H., & Al.ani, A. F. H. (2017). Influence of Temperature upon Permanent Deformation Parameters of Asphalt Concrete Mixes. Journal of Engineering, 23(7), 14–32.
Nizamuddin, S., Baloch, H. A., Jamal, M., Madapusi, S., & Giustozzi, F. (2022). Performance of waste plastic bio-oil as a rejuvenator for asphalt binder. Science of the Total Environment, 828, 154489. doi:10.1016/j.scitotenv.2022.154489.
Petersen, J. C., Robertson, R. E., Branthaver, J. F., Harnsberger, P. M., Duvall, J. J., Kim, S. S., ... & Bahia, H. U. (1994). Binder characterization and evaluation: Volume 1. Rep. No. SHRP-A-367, Strategic Highway Research Program, National Research Council, Washington, United States.
Ismael, M., Fattah, M. Y., & Jasim, A. F. (2022). Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. Journal of Engineering, 28(2), 99–116. doi:10.31026/j.eng.2022.02.07.
Raof, H. B., & Ismael, M. Q. (2019). Effect of PolyPhosphoric Acid on Rutting Resistance of Asphalt Concrete Mixture. Civil Engineering Journal, 5(9), 1929–1940. doi:10.28991/cej-2019-03091383.
Fang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: A review. Journal of Materials Science and Technology, 29(7), 589–594. doi:10.1016/j.jmst.2013.04.008.
Jasim, S. A., & Ismael, M. Q. (2021). Marshall Performance and Volumetric Properties of Styrene-Butadiene-Styrene Modified Asphalt Mixtures. Civil Engineering Journal, 7(6), 1050-1059. doi:10.28991/cej-2021-03091709.
Ismael, M. Q., Fattah, M. Y., & Jasim, A. F. (2021). Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), 3619–3627. doi:10.1016/j.asej.2021.02.038.
Kong, X., Liu, Y., & Yan, P. (2010). Temperature sensitivity of mechanical properties of cement asphalt mortars. Guisuanyan Xuebao (Journal of the Chinese Ceramic Society), 38(4), 553-558.
Li, R., Xiao, F., Amirkhanian, S., You, Z., & Huang, J. (2017). Developments of nano materials and technologies on asphalt materials – A review. Construction and Building Materials, 143, 633–648. doi:10.1016/j.conbuildmat.2017.03.158.
Al-Omari, A. A., Khasawneh, M. A., Al-Rousan, T. M., & Al-Theeb, S. F. (2021). Static creep of modified Superpave asphalt concrete mixtures using crumb tire rubber, microcrystalline synthetic wax, and nano-silica. International Journal of Pavement Engineering, 22(6), 794–805. doi:10.1080/10298436.2019.1646913.
Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Zoorob, S. E., & Usman, A. (2022). Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. International Journal of Pavement Engineering, 23(2), 207–220. doi:10.1080/10298436.2020.1737060.
Bhat, F. S., & Mir, M. S. (2019). Performance evaluation of nanosilica-modified asphalt binder. Innovative Infrastructure Solutions, 4(1), 1–10. doi:10.1007/s41062-019-0249-5.
Chen, Z. Q., & Li, Z. (2021). Preparation and stabilisation mechanism of asphalt-in-water Pickering emulsion stabilised by SiO2 nanoparticles. Road Materials and Pavement Design, 22(7), 1679–1691. doi:10.1080/14680629.2019.1708431.
Shafabakhsh, G., Sadeghnejad, M., & Ebrahimnia, R. (2021). Fracture resistance of asphalt mixtures under mixed-mode I/II loading at low-temperature: Without and with nano SiO2. Construction and Building Materials, 266, 120954. doi:10.1016/j.conbuildmat.2020.120954.
Ghanoon, S. A., & Tanzadeh, J. (2019). Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder. Construction and Building Materials, 223, 1074–1082. doi:10.1016/j.conbuildmat.2019.07.295.
Bala, N., Napiah, M., & Kamaruddin, I. (2020). Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. International Journal of Pavement Engineering, 21(1), 29–40. doi:10.1080/10298436.2018.1435881.
Fini, E. H., Hajikarimi, P., Rahi, M., & Nejad, F. M. (2016). Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. Journal of Materials in Civil Engineering, 28(2), 1–9. doi:10.1061/(ASCE)MT.1943-5533.
SCRB/R9. (2003). General Specification for Roads and Bridges. Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition. State Corporation of Roads and Bridges, Ministry of Housing and Construction, Baghdad, Republic of Iraq.
ASTM Volume 04.03. (2015). Road and Paving Materials, Vehicle - Pavement Systems. Annual Book of ASTM Standards, ASTM International, Pennsylvania, United States.
Galooyak, S. S., Palassi, M., Goli, A., & Farahani, H. Z. (2015). Performance Evaluation of Nano-Silica Modified Bitumen. International Journal Of Transportation Engineering, 3(1), 55–66.
Alhamali, D. I., Wu, J., Liu, Q., Hassan, N. A., Yusoff, N. I. M., & Ali, S. I. A. (2016). Physical and Rheological Characteristics of Polymer Modified Bitumen with Nanosilica Particles. Arabian Journal for Science and Engineering, 41(4), 1521–1530. doi:10.1007/s13369-015-1964-7.
AASHTO R 30-02. (2019). Standard Practice for Mixture Conditioning of Hot Mix Asphalt. American Association of States and Highway Transportation Officials (AASHTO), Washington, United States.
ASTM D1754-97(2002). (2010). Standard Test Method for Effect of Heat and Air on Asphaltic Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D1754-97R02.
Dehouche, N., Kaci, M., & Mokhtar, K. A. (2012). Influence of thermo-oxidative aging on chemical composition and physical properties of polymer modified bitumens. Construction and Building Materials, 26(1), 350–356. doi:10.1016/j.conbuildmat.2011.06.033.
Al-Haddad, A. H. A., & Al-Haydari, I. S. J. (2018). Modeling of Flexible Pavement Serviceability Based on the Fuzzy Logic Theory. Journal of Transportation Engineering, Part B: Pavements, 144(2), 04018017. doi:10.1061/jpeodx.0000026.
Taherkhani, H., & Afroozi, S. (2016). The properties of nanosilica-modified asphalt cement. Petroleum Science and Technology, 34(15), 1381–1386. doi:10.1080/10916466.2016.1205604.
Hasaninia, M., & Haddadi, F. (2018). Studying Engineering Characteristics of Asphalt Binder and Mixture Modified by Nanosilica and Estimating Their Correlations. Advances in Materials Science and Engineering, 1–9. doi:10.1155/2018/4560101.
Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X., & Goh, S. W. (2013). Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. Journal of Materials in Civil Engineering, 25(11), 1619–1630. doi:10.1061/(asce)mt.1943-5533.0000690.
Nazari, H., Naderi, K., & Moghadas Nejad, F. (2018). Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, 591–602. doi:10.1016/j.conbuildmat.2018.03.107.
DOI: 10.28991/CEJ-SP2023-09-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 zainab kadhim taher, Mohammed Qadir Ismael
This work is licensed under a Creative Commons Attribution 4.0 International License.