Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process

Zainab Kadhim Taher, Mohammed Q. Ismael


High-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall stability, flow, and wheel tracking tests. Field Emission Scanning Electron Microscopy (FESEM) was utilized to understand the microstructure changes of modified asphalt and estimate the dispersion of NS within the asphalt. The results revealed that using NS–asphalt mixtures as a surface layer in paving construction improved pavement performance by increasing stability, volumetric characteristics, and rutting resistance before and after aging. The FESEM images showed adequate dispersion of NS particles in the mixture. Results indicated that adding 4% of NS to asphalt mixtures effectively enhanced the pavement’s performance and rutting resistance.


Doi: 10.28991/CEJ-SP2023-09-01

Full Text: PDF


Rutting Resistance; Nano Silica (NS); Wheel Tracking Test; Aging; Field Emission Scanning Electron Microscopy (FESEM).


Saleem, A. A., & Ismael, M. Q. (2020). Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal (Iran), 6(9), 1726–1738. doi:10.28991/cej-2020-03091578.

Albayati, A. H., & Al.ani, A. F. H. (2017). Influence of Temperature upon Permanent Deformation Parameters of Asphalt Concrete Mixes. Journal of Engineering, 23(7), 14–32.

Nizamuddin, S., Baloch, H. A., Jamal, M., Madapusi, S., & Giustozzi, F. (2022). Performance of waste plastic bio-oil as a rejuvenator for asphalt binder. Science of the Total Environment, 828, 154489. doi:10.1016/j.scitotenv.2022.154489.

Petersen, J. C., Robertson, R. E., Branthaver, J. F., Harnsberger, P. M., Duvall, J. J., Kim, S. S., ... & Bahia, H. U. (1994). Binder characterization and evaluation: Volume 1. Rep. No. SHRP-A-367, Strategic Highway Research Program, National Research Council, Washington, United States.

Ismael, M., Fattah, M. Y., & Jasim, A. F. (2022). Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. Journal of Engineering, 28(2), 99–116. doi:10.31026/j.eng.2022.02.07.

Raof, H. B., & Ismael, M. Q. (2019). Effect of PolyPhosphoric Acid on Rutting Resistance of Asphalt Concrete Mixture. Civil Engineering Journal, 5(9), 1929–1940. doi:10.28991/cej-2019-03091383.

Fang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: A review. Journal of Materials Science and Technology, 29(7), 589–594. doi:10.1016/j.jmst.2013.04.008.

Jasim, S. A., & Ismael, M. Q. (2021). Marshall Performance and Volumetric Properties of Styrene-Butadiene-Styrene Modified Asphalt Mixtures. Civil Engineering Journal, 7(6), 1050-1059. doi:10.28991/cej-2021-03091709.

Ismael, M. Q., Fattah, M. Y., & Jasim, A. F. (2021). Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), 3619–3627. doi:10.1016/j.asej.2021.02.038.

Kong, X., Liu, Y., & Yan, P. (2010). Temperature sensitivity of mechanical properties of cement asphalt mortars. Guisuanyan Xuebao (Journal of the Chinese Ceramic Society), 38(4), 553-558.

Li, R., Xiao, F., Amirkhanian, S., You, Z., & Huang, J. (2017). Developments of nano materials and technologies on asphalt materials – A review. Construction and Building Materials, 143, 633–648. doi:10.1016/j.conbuildmat.2017.03.158.

Al-Omari, A. A., Khasawneh, M. A., Al-Rousan, T. M., & Al-Theeb, S. F. (2021). Static creep of modified Superpave asphalt concrete mixtures using crumb tire rubber, microcrystalline synthetic wax, and nano-silica. International Journal of Pavement Engineering, 22(6), 794–805. doi:10.1080/10298436.2019.1646913.

Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Zoorob, S. E., & Usman, A. (2022). Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. International Journal of Pavement Engineering, 23(2), 207–220. doi:10.1080/10298436.2020.1737060.

Bhat, F. S., & Mir, M. S. (2019). Performance evaluation of nanosilica-modified asphalt binder. Innovative Infrastructure Solutions, 4(1), 1–10. doi:10.1007/s41062-019-0249-5.

Chen, Z. Q., & Li, Z. (2021). Preparation and stabilisation mechanism of asphalt-in-water Pickering emulsion stabilised by SiO2 nanoparticles. Road Materials and Pavement Design, 22(7), 1679–1691. doi:10.1080/14680629.2019.1708431.

Shafabakhsh, G., Sadeghnejad, M., & Ebrahimnia, R. (2021). Fracture resistance of asphalt mixtures under mixed-mode I/II loading at low-temperature: Without and with nano SiO2. Construction and Building Materials, 266, 120954. doi:10.1016/j.conbuildmat.2020.120954.

Ghanoon, S. A., & Tanzadeh, J. (2019). Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder. Construction and Building Materials, 223, 1074–1082. doi:10.1016/j.conbuildmat.2019.07.295.

Bala, N., Napiah, M., & Kamaruddin, I. (2020). Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. International Journal of Pavement Engineering, 21(1), 29–40. doi:10.1080/10298436.2018.1435881.

Fini, E. H., Hajikarimi, P., Rahi, M., & Nejad, F. M. (2016). Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. Journal of Materials in Civil Engineering, 28(2), 1–9. doi:10.1061/(ASCE)MT.1943-5533.

SCRB/R9. (2003). General Specification for Roads and Bridges. Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition. State Corporation of Roads and Bridges, Ministry of Housing and Construction, Baghdad, Republic of Iraq.

ASTM Volume 04.03. (2015). Road and Paving Materials, Vehicle - Pavement Systems. Annual Book of ASTM Standards, ASTM International, Pennsylvania, United States.

Galooyak, S. S., Palassi, M., Goli, A., & Farahani, H. Z. (2015). Performance Evaluation of Nano-Silica Modified Bitumen. International Journal Of Transportation Engineering, 3(1), 55–66.

Alhamali, D. I., Wu, J., Liu, Q., Hassan, N. A., Yusoff, N. I. M., & Ali, S. I. A. (2016). Physical and Rheological Characteristics of Polymer Modified Bitumen with Nanosilica Particles. Arabian Journal for Science and Engineering, 41(4), 1521–1530. doi:10.1007/s13369-015-1964-7.

AASHTO R 30-02. (2019). Standard Practice for Mixture Conditioning of Hot Mix Asphalt. American Association of States and Highway Transportation Officials (AASHTO), Washington, United States.

ASTM D1754-97(2002). (2010). Standard Test Method for Effect of Heat and Air on Asphaltic Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D1754-97R02.

Dehouche, N., Kaci, M., & Mokhtar, K. A. (2012). Influence of thermo-oxidative aging on chemical composition and physical properties of polymer modified bitumens. Construction and Building Materials, 26(1), 350–356. doi:10.1016/j.conbuildmat.2011.06.033.

Al-Haddad, A. H. A., & Al-Haydari, I. S. J. (2018). Modeling of Flexible Pavement Serviceability Based on the Fuzzy Logic Theory. Journal of Transportation Engineering, Part B: Pavements, 144(2), 04018017. doi:10.1061/jpeodx.0000026.

Taherkhani, H., & Afroozi, S. (2016). The properties of nanosilica-modified asphalt cement. Petroleum Science and Technology, 34(15), 1381–1386. doi:10.1080/10916466.2016.1205604.

Hasaninia, M., & Haddadi, F. (2018). Studying Engineering Characteristics of Asphalt Binder and Mixture Modified by Nanosilica and Estimating Their Correlations. Advances in Materials Science and Engineering, 1–9. doi:10.1155/2018/4560101.

Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X., & Goh, S. W. (2013). Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. Journal of Materials in Civil Engineering, 25(11), 1619–1630. doi:10.1061/(asce)mt.1943-5533.0000690.

Nazari, H., Naderi, K., & Moghadas Nejad, F. (2018). Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, 591–602. doi:10.1016/j.conbuildmat.2018.03.107.

Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-01


  • There are currently no refbacks.

Copyright (c) 2022 zainab kadhim taher, Mohammed Qadir Ismael

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.