Designing Mesh Turbomachinery with the Development of Euler’s Ideas and Investigating Flow Distribution Characteristics

Yuri Appolonievich Sazonov, Mikhail A. Mokhov, Inna Vladimirovna Gryaznova, Victoria Vasilievna Voronova, Khoren Arturovich Tumanyan, Mikhail Alexandrovich Frankov, Nikolay Nikolaevich Balaka


This research discusses developing an Euler turbine-based hybrid mesh turbomachinery. Within the framework of mechanical engineering science, turbomachinery classification and a novel method for mesh turbomachinery design were considered. In such a turbomachine, large blades are replaced by a set of smaller blades, which are interconnected to form flow channels in a mesh structure. Previous studies (and reasoning within the framework of inductive and deductive logic) showed that the jet mesh control system allows for operation with several flows simultaneously and provides a pulsed flow regime in flow channels. This provides new opportunities for expanding the control range and reducing the thermal load on the turbomachine blades. The novel method for performance evaluation was confirmed by the calculation: the possibility of implementing pulsed cooling of blades periodically washed by a hot working gas flow (at a temperature of 1000°C) and a cold gas flow (at a temperature of 20°C) was shown. The temperature of the blade walls remained 490–525°C. New results of ongoing research are focused on creating multi-mode turbomachinery that operates in complicated conditions, e.g., in offshore gas fields. Gas energy is lost and dissipated in the throttle at the mouth of each high-pressure well. Within the framework of ongoing research, the environmentally friendly net reservoir energy of high-pressure well gas should be rationally used for operating a booster compressor station. Here, the energy consumption from an external power source can be reduced by 50%, according to preliminary estimates.


Doi: 10.28991/CEJ-2022-08-11-017

Full Text: PDF


Flow; Euler Turbine; Mesh Turbomachine; Interdisciplinary Approach; Transdisciplinarity; Deductive Logic; Inductive Logic.


Kosov, M. E., Akhmadeev, R. G., Smirnov, D. A., Solyannikova, S. P., & Rycova, I. N. (2018). Energy industry: Effectiveness from innovations. International Journal of Energy Economics and Policy, 8(4), 83.

Bahrami, N., Liu, S., Ponkratov, V. V., Nguyen, P. T., Maseleno, A., & Berti, S. (2022). Novel load management for renewable generation sources/battery system through cut energy expenditure and generate revenue. International Journal of Ambient Energy, 43(1), 368–384. doi:10.1080/01430750.2019.1636868.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Development and prototyping of jet systems for advanced turbomachinery with mesh rotor. Emerging Science Journal, 5(5), 775–801. doi:10.28991/esj-2021-01311.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of mesh turbomachinery based on the euler turbine. Energies, 14(17), 5292. doi:10.3390/en14175292.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., Voronova, V. V., & Balaka, N. N. (2022). RF Utility Model Patent No. 213280. Jet installation. Published on 05.09.2022 Bulletin No. 25. Decision to grant a patent for a utility model of the Russian Federation under application No.2022110755 – 19.07.2022. Available online : IZPM/RUNWU1/000/000/000/213/280/%D0%9F%D0%9C-00213280-00001/document.pdf (accessed on May 2022).

Alayi, R., Sevbitov, A., Assad, M. E. H., Akhmadeev, R., & Kosov, M. (2022). Investigation of energy and economic parameters of photovoltaic cells in terms of different tracking technologies. International Journal of Low-Carbon Technologies, 17, 160–168. doi:10.1093/ijlct/ctab093.

Konovalova, N.E. (2005). Calculation of the minimum drag of lattice wings and their elements and comparison of the calculation results with experiment at M = 0.6 - 4.0. Air Fleet Technology, 2(673), 36–43.

Xue, Y., Wang, L., & Fu, S. (2018). Detached-eddy simulation of supersonic flow past a spike-tipped blunt nose. Chinese Journal of Aeronautics, 31(9), 1815–1821. doi:10.1016/j.cja.2018.06.016.

Anbu Serene Raj, C., Narasimhavaradhan, M., Vaishnavi, N., Arunvinthan, S., Al Arjani, A., & Nadaraja Pillai, S. (2020). Aerodynamics of ducted re-entry vehicles. Chinese Journal of Aeronautics, 33(7), 1837–1849. doi:10.1016/j.cja.2020.02.019.

Ding, X., Guo, P., Xu, K., & Yu, Y. (2019). A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chinese Journal of Aeronautics, 32(1), 200–214. doi:10.1016/j.cja.2018.05.012.

Ahmad, K., Baig, Y., Rahman, H., & Hasham, H. J. (2020). Progressive failure analysis of helicopter rotor blade under aeroelastic loading. Aviation, 24(1), 33–41. doi:10.3846/aviation.2020.12184.

Kim, H. I., Roh, T. S., Huh, H., & Lee, H. J. (2022). Development of Ultra-Low Specific Speed Centrifugal Pumps Design Method for Small Liquid Rocket Engines. Aerospace, 9(9). doi:10.3390/aerospace9090477.

Hu, H., Yang, Y., Liu, Y., Liu, X., & Wang, Y. (2021). Aerodynamic and aeroacoustic investigations of multi-copter rotors with leading edge serrations during forward flight. Aerospace Science and Technology, 112, 106669. doi:10.1016/j.ast.2021.106669.

Hu, Y., Qing, J. xiang, Liu, Z. H., Conrad, Z. J., Cao, J. N., & Zhang, X. P. (2021). Hovering efficiency optimization of the ducted propeller with weight penalty taken into account. Aerospace Science and Technology, 117, 106937. doi:10.1016/j.ast.2021.106937.

Glaznev, V.N., Zapryagaev, V.I., Uskov, V.N.,Terekhova, N.M., Erofeev, V.K., Grigoriev, V.V., Kozhemyakin, A.O., Kotenok, V.A., & Omelchenko, A.V. (2000). Jet and unsteady flows in gas dynamics. SO RAN Press, Novosibirsk, Russia.

Garbaruk, A.V. (2020).Numerical simulation and stability analysis of near-wall turbulent flows. Ph.D. Thesis, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.

Deng, H., Zhao, J., & Wang, C. (2021). Leaf Vein-Inspired Bionic Design Method for Heat Exchanger Infilled with Graded Lattice Structure. Aerospace, 8(9), 237. doi:10.3390/aerospace8090237.

Orman, Ł. J. (2020). Aspects of complexity of metal-fibrous microstructure for the construction of high-performance heat exchangers: Thermal properties. Aviation, 24(3), 99–104. doi:10.3846/aviation.2020.12086.

Giuliani, F., Stütz, M., Paulitsch, N., & Andracher, L. (2020). Forcing Pulsations by Means of a Siren for Gas Turbine Applications. International Journal of Turbomachinery, Propulsion and Power, 5(2), 9. doi:10.3390/ijtpp5020009.

Sundermeier, S., Passmann, M., aus der Wiesche, S., & Kenig, E. Y. (2022). Flow in Pillow-Plate Channels for High-Speed Turbomachinery Heat Exchangers. International Journal of Turbomachinery, Propulsion and Power, 7(2), 12. doi:10.3390/ijtpp7020012.

Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2022). Performance Improvement of Air-cooled Battery Thermal Management System using Sink of Different Pin-Fin Shapes. Emerging Science Journal, 6(4), 851–865. doi:10.28991/ESJ-2022-06-04-013.

Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. M. (2022). The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerging Science Journal, 6(1), 128–137. doi:10.28991/ESJ-2022-06-01-010.

Friedmann, G. (1952). US Patent 2623474. Injection mixer. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Arabnejad, M. H., Svennberg, U., & Bensow, R. E. (2022). Numerical Assessment of Cavitation Erosion Risk in a Commercial Water-Jet Pump. Journal of Fluids Engineering, 144(5), 051201. doi:10.1115/1.4052634.

Chen, T., Zhou, Y., Wang, B., Deng, W., Song, Z., Li, W., ... & Sun, L. (2020). Investigations on combustion optimization and NOX reduction of a 600-MWe down-fired boiler: Influence of rearrangement of tertiary air and jet angle of secondary air and separated over-fire air. Journal of Cleaner Production, 277, 124310. doi:10.1016/j.jclepro.2020.124310

Rantererung, C. L., Soeparman, S., Soenoko, R., & Wahyudi, S. (2020). A double nozzle cross flow turbine fluid flow dynamics. Journal of Southwest Jiaotong University, 55(4). doi:10.35741/issn.0258-2724.55.4.49.

Han, J., Feng, J., Hou, T., & Peng, X. (2021). Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research, 45(2), 3031–3048. doi:10.1002/er.5996.

Arun Kumar, R., & Rajesh, G. (2018). Physics of vacuum generation in zero-secondary flow ejectors. Physics of Fluids, 30(6), 066102. doi:10.1063/1.5030073.

Sri Ramya, E., Lovaraju, P., Dakshina Murthy, I., Thanigaiarasu, S., & Rathakrishnan, E. (2020). Experimental and computational investigations on flow characteristics of supersonic ejector. International Review of Aerospace Engineering, 13(1), 1–9. doi:10.15866/irease.v13i1.18108.

Falsafioon, M., Aidoun, Z., & Ameur, K. (2019). Numerical investigation on the effects of internal flow structure on ejector performance. Journal of Applied Fluid Mechanics, 12(6), 2003–2015. doi:10.29252/JAFM.12.06.29895.

Bharate, G., & Kumar R, A. (2021). Starting transients in second throat vacuum ejectors for high altitude testing facilities. Aerospace Science and Technology, 113. doi:10.1016/j.ast.2021.106687.

Skaggs, B. D. (2000). US Patent #6,017,195. Fluid jet ejector and ejection method. United States Patent Office, Alexandria, United States. Available online: on July 2022).

Bayles, W. H., et al. (1962). US Patent #3,064,878. Method and apparatus for high performance evacuation system. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Voelker, M., & Sausner, A. (2018). US Patent #10,072,674. Suction jet pump. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Chen, H., Cai, C., Jiang, S., & Zhang, H. (2021). Numerical modeling on installed performance of turbofan engine with inlet ejector. Aerospace Science and Technology, 112, 106590. doi:10.1016/j.ast.2021.106590.

Monakhova, V.P. (2005). Research of ejector thrust amplifiers (ETA). PhD Thesis, Moscow Aviation Institute, Moscow, Russia.

Jing, Q., Xu, W., Ye, W., & Li, Z. (2022). The Relationship between Contraction of the Ejector Mixing Chamber and Supersonic Jet Mixing Layer Development. Aerospace, 9(9). doi:10.3390/aerospace9090469.

Gu, R., Sun, M., Cai, Z., Chen, J., Li, P., Dong, Z., Wang, T., Yao, Y. Z., & Huang, Y. H. (2021). Experimental study on the rocket-ejector system with a throat in the secondary stream. Aerospace Science and Technology, 113. doi:10.1016/j.ast.2021.106697.

Berezhnoy, A.S. (2014). Improving the performance of a reaction-jet pneumatic unit based on the refinement of the workflow model. Ph.D. Thesis, Sumy State University, Sumy, Ukraine.

Yan, J., Zhang, C., Huo, S., Chai, X., Liu, Z., & Yan, K. (2021). Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese Journal of Aeronautics, 34(8), 245–257. doi:10.1016/j.cja.2020.09.026.

Di Caprio, F., Acanfora, V., Franchitti, S., Sellitto, A., & Riccio, A. (2019). Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing. Aerospace, 6(6), 71. doi:10.3390/aerospace6060071.

Boccini, E., Furferi, R., Governi, L., Meli, E., Ridolfi, A., Rindi, A., & Volpe, Y. (2019). Toward the integration of lattice structure-based topology optimization and additive manufacturing for the design of turbomachinery components. Advances in Mechanical Engineering, 11(8), 1–14. doi:10.1177/1687814019859789.

Zhang, Y., Li, F., & Jia, D. (2020). Lightweight design and static analysis of lattice compressor impeller. Scientific Reports, 10(1). doi:10.1038/s41598-020-75330-z.

Krasnova, E.V., & Saushkin, B.P. (2022). Additive shaping of products from metals and alloys by an electron beam. Selective melting (Part 1). Additive Technologies, 2, 44-57.

Bhide, K., Siddappaji, K., & Abdallah, S. (2021). Aspect ratio driven relationship between nozzle internal flow and supersonic jet mixing. Aerospace, 8(3), 78. doi:10.3390/aerospace8030078.

Ferlauto, M., Ferrero, A., Marsicovetere, M., & Marsilio, R. (2021). Differential throttling and fluidic thrust vectoring in a linear aerospike. International Journal of Turbomachinery, Propulsion and Power, 6(2). doi:10.3390/ijtpp6020008.

Kovalenko, N.D., Strelnikov, G.A., & Zolotko, A.E. (2011).Gas-dynamic aspects and development of high-density rocket stage engine nozzles. Technical Mechanics, 3, 36–53.

Zhao, Z., Luo, Z., Deng, X., Liu, Z., & Li, S. (2021). Theoretical modeling of vectoring dual synthetic jet based on regression analysis. Chinese Journal of Aeronautics, 34(3), 1–12. doi:10.1016/j.cja.2020.07.020.

He, Y., Yang, Q., & Gao, X. (2021). Comprehensive optimization design of aerodynamic and electromagnetic scattering characteristics of serpentine nozzle. Chinese Journal of Aeronautics, 34(3), 118–128. doi:10.1016/j.cja.2020.10.010.

Bhide, K., Siddappaji, K., Abdallah, S., & Roberts, K. (2021). Improved supersonic turbulent flow characteristics using non-linear eddy viscosity relation in RANS and HPC-enabled LES. Aerospace, 8(11), 352. doi:10.3390/aerospace8110352.

Chen, S., Gojon, R., & Mihaescu, M. (2021). Flow and aeroacoustic attributes of highly-heated transitional rectangular supersonic jets. Aerospace Science and Technology, 114, 106747. doi:10.1016/j.ast.2021.106747.

Quadros, J. D., Khan, S. A., Aabid, A., Alam, M. S., & Baig, M. (2021). Machine Learning Applications in Modelling and Analysis of Base Pressure in Suddenly Expanded Flows. Aerospace, 8(11), 318.

Mirjalily, S. A. A. (2021). Lambda shock behaviors of elliptic supersonic jets; a numerical analysis with modification of RANS turbulence model. Aerospace Science and Technology, 112. doi:10.1016/j.ast.2021.106613.

Faheem, M., Khan, A., Kumar, R., Afghan Khan, S., Asrar, W., & Sapardi, A. M. (2021). Experimental study on the mean flow characteristics of a supersonic multiple jet configuration. Aerospace Science and Technology, 108. doi:10.1016/j.ast.2020.106377.

Kini, C. R., Purohit, S., Bhagat, K. K., & Shenoy B., S. (2019). Effect of helix angle and cross section of helicoidal ducts in gas turbine blade cooling. International Review of Mechanical Engineering, 13(2), 87–96. doi:10.15866/ireme.v13i2.14942.

Kini, C. R., Purohit, S., Bhagat, K. K., & Satish Shenoy, B. (2018). Heat transfer augmentation and cooling of a turbine blade using an innovative converging-diverging ducts - A CFD study. International Review of Mechanical Engineering, 12(7), 570–579. doi:10.15866/ireme.v12i7.15125.

Yeranee, K., & Rao, Y. (2021). A review of recent studies on rotating internal cooling for gas turbine blades. Chinese Journal of Aeronautics, 34(7), 85–113. doi:10.1016/j.cja.2020.12.035.

Deng, Q., Wang, H., He, W., & Feng, Z. (2022). Cooling Characteristic of a Wall Jet for Suppressing Cross flow Effect under Conjugate Heat Transfer Condition. Aerospace, 9(1), 29. doi:10.3390/aerospace9010029.

Courtis, M., Murray, A., Coulton, B., Ireland, P., & Mayo, I. (2021). Influence of spanwise and streamwise film hole spacing on adiabatic film effectiveness for effusion-cooled gas turbine blades. International Journal of Turbomachinery, Propulsion and Power, 6(3), 37. doi:10.3390/ijtpp6030037.

Sarwar Abbasi, W., Ul Islam, S., Faiz, L., & Rahman, H. (2018). Numerical investigation of transitions in flow states and variation in aerodynamic forces for flow around square cylinders arranged inline. Chinese Journal of Aeronautics, 31(11), 2111–2123. doi:10.1016/j.cja.2018.08.020.

Li, Z., Zhou, K., Liu, Y., & Wen, X. (2021). Jet sweeping angle control by fluidic oscillators with master-slave designs. Chinese Journal of Aeronautics, 34(5), 145–162. doi:10.1016/j.cja.2020.12.013.

Sang, Y., Shan, Y., Zhang, J., Tan, X., & Lyu, Y. (2021). Numerical investigation on flow mechanism in a supersonic fluidic oscillator. Chinese Journal of Aeronautics, 34(5), 214–223. doi:10.1016/j.cja.2020.10.015.

Zheng, J. G., Xia, L., Hu, J., & Mao, Y. J. (2021). Numerical investigation of characteristics of fluidic oscillator operating in quiescent air and a crossflow. Aerospace Science and Technology, 113, 106731. doi:10.1016/j.ast.2021.106731.

Xiao, T., Zhu, Z., Deng, S., Gui, F., Li, Z., & Zhou, Z. (2021). Effects of nozzle geometry and active blowing on lift enhancement for upper surface blowing configuration. Aerospace Science and Technology, 111, 106536. doi:10.1016/j.ast.2021.106536.

Chen, Y., Hou, Z., Deng, X., Guo, Z., Shao, S., & Xu, B. (2021). Numerical Study of the Lift Enhancement Mechanism of Circulation Control in Transonic Flow. Aerospace, 8(11), 311. doi:10.3390/aerospace8110311.

Moubogha Moubogha, J., Margalida, G., Joseph, P., Roussette, O., & Dazin, A. (2022). Stall Margin Improvement in an Axial Compressor by Continuous and Pulsed Tip Injection. International Journal of Turbomachinery, Propulsion and Power, 7(1), 1-15. doi:10.3390/ijtpp7010010.

Neigapula, S. N. V., Maddula, S. P., & Nukala, V. B. (2020). A study of high lift aerodynamic devices on commercial aircrafts. Aviation, 24(3), 123–136. doi:10.3846/aviation.2020.12815.

Zhao, K., Ming, M., Li, F., Lu, Y., Zhou, T., Wang, K., & Meng, N. (2020). Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 33(6), 1602–1610. doi:10.1016/j.cja.2020.01.003.

Chanut, P. L. J. (1961). US Patent # 3013494. Guided missile. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Sota Jr., C. G., Callis, G. J., & Masse, R. K. (2007). United States Patent 7155898. Thrust vector control system for a plug nozzle rocket engine. United States Patent Office, Alexandria, United States. Available online: https://www.freepatentsonline .com/7155898.pdf (accessed on July 2022).

Aerospaceweb. Missile Control Systems. Available online: (accessed on May 2022).

Bailey,J. M. (1982). US Patent #4355949. Control system and nozzle for impulse turbines. United States Patent Office, Alexandria, United States. Available online (accessed on July 2022).

Hickerson, F. R. (1965).United States Patent 3192714. Variable thrust rocket engine incorporating thrust vector control. United States Patent Office, Alexandria, United States. Available online: (accessed on June 2022).

Semlitsch, B., & Mihăescu, M. (2021). Evaluation of Injection Strategies in Supersonic Nozzle Flow. Aerospace, 8(12), 369. doi:10.3390/aerospace8120369.

Kinsey, L. E., & Cavalleri, R. J. (2013).United States Patent 8387360. Integral thrust vector and roll control system. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Plumpe Jr., W. H. (2003).United States Patent 6622472. Apparatus and method for thrust vector control. United States Patent Office, Alexandria, United States. Available online: (accessed on July 2022).

Bhadran, A., Manathara, J. G., & Ramakrishna, P. A. (2022). Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace, 9(9). doi:10.3390/aerospace9090474.

Kopiev, V.F., Belyaev, I.V., & Dunaevsky, A.I. (2022). RF patent #2776193. Supersonic Aircraft. Bull.#20. Available online: (accessed on August 2022).

Ji, Z., Zhang, H., & Wang, B. (2021). Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine. Aerospace Science and Technology, 113, 106694. doi:10.1016/j.ast.2021.106694.

Seitz, A., Nickl, M., Troeltsch, F., & Ebner, K. (2022). Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept. Aerospace, 9(2), 68. doi:10.3390/aerospace9020068.

Zhou, S., Ma, H., Ma, Y., Zhou, C., & Hu, N. (2021). Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine. Aerospace Science and Technology, 111. doi:10.1016/j.ast.2021.106559.

Hermet, F., Binder, N., Gressier, J., & Sáez-Mischlich, G. (2021). Pulsed Flow Turbine Design Recommendations. International Journal of Turbomachinery, Propulsion and Power, 6(3), 24. doi:10.3390/ijtpp6030024.

Christodoulides, P., Agathokleous, R., Aresti, L., Kalogirou, S. A., Tassou, S. A., & Florides, G. A. (2022). Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, including Heat Pipes, and Case Studies. Energies, 15(1), 384. doi:10.3390/en15010384.

Danieli, P., Masi, M., Lazzaretto, A., Carraro, G., & Volpato, G. (2022). A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations. Energies, 15(1), 371. doi:10.3390/en15010371.

Frankiewicz, S., & Woziwodzki, S. (2022). Gas Hold‐Up and Mass Transfer in a Vessel with an Unsteady Rotating Concave Blade Impeller. Energies, 15(1), 346. doi:10.3390/en15010346.

Khanjari, A., Kang, S., Lee, D., Jung, D. Y., & Lee, J. H. (2022). Studying Four Different Permanent Magnet Eddy Currents Heaters with Different Magnet Areas and Numbers to Produce Heat Directly from a Vertical Axis Wind Turbine. Energies, 15(1), 275. doi:10.3390/en15010275.

Rozin, V. M., Gorokhov, V. G., Aronson, O. V., & Alekseeva, I. Yu. (1997). Philosophy of technology: history and modernity. Part I. General foundations of the philosophy of technology. Chapter 1. Philosophizing engineers and the first philosophers of technology. Collective monograph. Institute of Philosophy of the Russian Academy of Sciences, Moscow, Russia.

Baturin, O. V. (2011). Lecture notes on the academic discipline “Theory and calculation of blade machines: textbook. SSAU Press, Samara, Russia.

Engelmeyer, P.K. (1911). Creative personality and environment in the field of technical inventions. Education, Saint Petersburg, Russia.

Patnaik, J., & Tarei, P. K. (2022). Analysing appropriateness in appropriate technology for achieving sustainability: A multi-sectorial examination in a developing economy. Journal of Cleaner Production, 349, 131204. doi:10.1016/j.jclepro.2022.131204.

Petrovich, G. P. (2002). Philosophy of technology and creativity of P. K. Engelmeyer: Historical and philosophical analysis. Ph.D. Thesis, Ural State Economic University Press, Yekaterinburg, Russia.

Sazonov, Y. A. (2012). Fundamentals of calculation and design of pump-ejector installations. SUE “Oil and Gas Publishing House” of Gubkin University: Moscow, Russia.

UNESCO (1998). Transdisciplinarity: Stimulating synergies, integrating knowledge. UNESCO, Division of Philosophy and Ethics, Geneva, Switzerland. Available online: (accessed on May 2022).

Sheptunov, Sergey. A., Alexandrov, I. A., Golovatov, D. A., & Glashev, R. M. (2018). Simulation of Thermoset Heat Conductivity by Means of Artificial Neural Networks. 2018 IEEE International Conference “Quality Management, Transport and Information Security, Information Technologies. doi:10.1109/itmqis.2018.8524984.

Tatarkanov, A. A. B., Alexandrov, I. A., & Olejnik, A. V. (2020). Evaluation of the contact surface parameters at knurling finned heat-exchanging surface by knurls at ring blanks. Periodico Tche Quimica, 17(36), 372–389.

Kalinkevich, N. V., &Melnik, I. A. (2017). Turbomachinery. Fundamentals of theory: textbook. Sumy State University, Sumy, Ukraine.

Raskin, N.M. (1958). Euler’s Questions of Technique. Leonhard Euler. Collection of articles in honor of the 250th anniversary of the birth, presented to the Academy of Sciences of the USSR, 499–556, Publishing House of the Academy of Sciences of the USSR, Moscow, Russia.

Ackeret, J. (1944). Investigation of a water turbine built according to Euler's proposals (1754). Swiss Construction Newspaper, 123/124. Available online: (accessed on August 2022).

Encyclopedia of Humanities. Concepts. Concepts of scientific discourse. Concepts of methodological discourse. Induction. Available online: (accessed on August 2022). (In Russian).

Franssen, M., Lokhorst, G.-J., & van de Poel, I. (2018). Philosophy of Technology. Stanford Encyclopedia of Philosophy. Available online: (accessed on May 2022).

Sojka, V., & Lepšík, P. (2020). Use of triz, and triz with other tools for process improvement: A literature review. Emerging Science Journal, 4(5), 319–335. doi:10.28991/esj-2020-01234.

Altshuller, G. S. (2011). To find an idea: An introduction to TRIZ - the theory of inventive problem solving. Alpina Publisher, Moscow, Russia.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-017


  • There are currently no refbacks.

Copyright (c) 2022 Yuri Appolonievich Sazonov, Mikhail Albertovich Mokhov, Inna Vladimirovna Gryaznova, Victoria Vasilievna Voronova, Khoren Arturovich Tumanyan, Mikhail Alexandrovich Frankov, Nikolay Nikolaevich Balaka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.