Performance Comparison of Crossflow Turbine Configuration Upper Blade Convex and Curvature by Computational Method

Dendy Adanta, Dewi Puspita Sari, Imam Syofii, Aji Putro Prakoso, Muhammad Amsal Ade Saputra, Ismail Thamrin

Abstract


A pico-hydro-type crossflow turbine (CFT) with an off-grid system configuration is a suitable option to increase the electrification ratio in remote or rural areas because it has a simple shape and can be applied in run-of-river conditions. Yet, a comprehensive study is necessary for the CFT to be applied to run-of-river conditions (low head and extreme fluctuation discharge), since this is categorized as an impulse turbine. One solution to optimize the CFT’s performance in this context is to increase the lift force. Hence, this study investigated the effect of the upper blade of the CFT with convex and curved configurations using the computational fluid dynamics (CFD) method. The CFD transient approach uses a moving mesh feature, and the solver is pressure-based in low-head conditions (5 m pressure). The CFD results and analysis of variance (ANOVA) calculation results from this study reveal that the upper CFT affects the performance of the turbine. The relationship of the CFT performance with the rotation and specific speed is parabolic. The express empirical law relation for performance to rotation is a four-order polynomial, and for performance to a specific speed, a three-order polynomial. Based on empirical laws, a CFT with a convex blade is recommended for conditions with low head and extreme fluctuation discharge since it has a wider range of specific speeds than a curved blade, propeller, or Kaplan, Pelton, or Francis turbine.

 

Doi: 10.28991/CEJ-2023-09-01-012

Full Text: PDF


Keywords


Computational Fluid Dynamics (CFD); Crossflow Turbine; Performance; Upper Blade; Specific Speed; Hydrodynamic.

References


Adanta, D. B. W., Quaranta, E., & I. Mahlia, T. M. (2019). Investigation of the effect of gaps between the blades of open flume Pico hydro turbine runners. Journal of Mechanical Engineering and Sciences, 13(3), 5493–5512. doi:10.15282/jmes.13.3.2019.18.0444.

Montanari, R. (2003). Criteria for the economic planning of a low power hydroelectric plant. Renewable Energy, 28(13), 2129–2145. doi:10.1016/S0960-1481(03)00063-6.

Sammartano, V., Morreale, G., Sinagra, M., & Tucciarelli, T. (2016). Numerical and experimental investigation of a cross-flow water turbine. Journal of Hydraulic Research, 54(3), 321–331. doi:10.1080/00221686.2016.1147500.

Sinagra, M., Sammartano, V., Aricò, C., Collura, A., & Tucciarelli, T. (2014). Cross-Flow turbine design for variable operating conditions. Procedia Engineering, 70, 1539–1548. doi:10.1016/j.proeng.2014.02.170.

Achebe, C. H., Okafor, O. C., & Obika, E. N. (2020). Design and implementation of a crossflow turbine for Pico hydropower electricity generation. Heliyon, 6(7), 4523. doi:10.1016/j.heliyon.2020.e04523.

De Andrade, J., Curiel, C., Kenyery, F., Aguilln, O., Vásquez, A., & Asuaje, M. (2011). Numerical investigation of the internal flow in a Banki turbine. International Journal of Rotating Machinery, 2011. doi:10.1155/2011/841214.

Warjito, W., Budiarso, B. & Adanta, D. (2021). Computational analysis of flow field on cross-flow hydro turbines. Engineering Letters, 29(1), 87–94.

Sammartano, V., Aricò, C., Carravetta, A., Fecarotta, O., & Tucciarelli, T. (2013). Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis. Energies, 6(5), 2362–2385. doi:10.3390/en6052362.

Choi, Y.-D., Lim, J.-I., Kim, Y.-T., & Lee, Y.-H. (2008). Performance and Internal Flow Characteristics of a Cross-Flow Hydro Turbine by the Shapes of Nozzle and Runner Blade. Journal of Fluid Science and Technology, 3(3), 398–409. doi:10.1299/jfst.3.398.

Warjito, W., Budiarso, B., Celine, K., & Nasution, S. B. S. (2021). Computational Method for Designing a Nozzle Shape to Improve the Performance of Pico-Hydro Crossflow Turbines. International Journal of Technology, 12(1), 139. doi:10.14716/ijtech.v12i1.4225.

Aliman, I., Kurniawati, I., Wulandari, J. A., & Sutikno, P. (2018). Evaluation design and simulation of three-way nozzle and control flow vane nozzle on cross flow water turbine for various head. AIP Conference Proceedings. doi:10.1063/1.5046631.

Sutikno, P., Seyhak, D., Diasta, I. N., Firmansyah, I., & Zulkarnain. (2017). Investigation of the Standardized a Cross Flow Turbine Used the Numerical Simulation and Experimental Results. Proceedings of the 14th Asian International Conference on Fluid Machinery, 10-13 November, 2017, Jiangsu, China.

Anand, R. S., Jawahar, C. P., Bellos, E., & Malmquist, A. (2021). A comprehensive review on Crossflow turbine for hydropower applications. Ocean Engineering, 240, 110015. doi:10.1016/j.oceaneng.2021.110015.

Picone, C., Sinagra, M., Aricò, C., & Tucciarelli, T. (2021). Numerical analysis of a new cross-flow type hydraulic turbine for high head and low flow rate. Engineering Applications of Computational Fluid Mechanics, 15(1), 1491–1507. doi:10.1080/19942060.2021.1974559.

Hannachi, M., Ketata, A., Sinagra, M., Aricò, C., Tucciarelli, T., & Driss, Z. (2021). A novel pressure regulation system based on Banki hydro turbine for energy recovery under in-range and out-range discharge conditions. Energy Conversion and Management, 243, 114417. doi:10.1016/j.enconman.2021.114417.

Adhikari, R. (2016). Design improvement of crossflow hydro turbine. Ph.D. Thesis, University of Calgary, Calgary, Canada. doi:10.11575/PRISM/25581.

Adhikari, R. C., & Wood, D. H. (2018). Computational analysis of part-load flow control for crossflow hydro-turbines. Energy for Sustainable Development, 45, 38–45. doi:10.1016/j.esd.2018.04.003.

Sinagra, M., Sammartano, V., Aricò, C., & Collura, A. (2016). Experimental and Numerical Analysis of a Cross-Flow Turbine. Journal of Hydraulic Engineering, 142(1), 04015040–1–04015040–8,. doi:10.1061/(asce)hy.1943-7900.0001061.

Munson, B. R., Young, D. F., & Okiishi, T. H. (1994). Fundamentals of fluid mechanics. Wiley, Hoboken, United States. doi:10.1201/b11709-7.

Adanta, D., Budiarso, Warjito, Siswantara, A. I., & Prakoso, A. P. (2018). Performance comparison of NACA 6509 and 6712 on pico hydro type cross-flow turbine by numerical method. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 116–127.

Zaffar, A., Ibrahim, B., Sarwar, M. A., Chattha, J. A., & Asif, M. (2018). Optimization of blade profiles of cross flow turbine. International Journal of Power and Energy Conversion, 9(4), 311–326. doi:10.1504/IJPEC.2018.094952.

Adanta, D. (2020). Investigation of the Constant of Bachelor and Kolmogorov on Standard k-epsilon Turbulence Model for Cross-Flow Pico-Hydro Turbine. PhD Thesis, Universitas Indonesia, Depok City, Indonesia. (In Indonesian).

Adhikari, R., & Wood, D. (2018). The design of high efficiency crossflow hydro turbines: A review and extension. Energies, 11(2), 1–18,. doi:10.3390/en11020267.

Davidson, L. (2018). Fluid mechanics, turbulent flow and turbulence modeling. Chalmers University of Technology, Goteborg, Sweden.

Tennekes, H., & Lumley, J. L. (2020). A First Course in Turbulence. MIT Press, Cambridge, Massachusetts, United States. doi:10.7551/mitpress/3014.001.0001.

ANSYS Fluent. (2013). Release 15.0, Theory Guide. Pennsylvania, United States.

Siswantara, A. I., Budiarso, Prakoso, A. P., Gunadi, G. G. R., Warjito, & Adanta, D. (2018). Assessment of turbulence model for cross-flow pico hydro turbine numerical simulation. CFD Letters, 10(2), 38–48.

Menter, F. (1993). Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows. 23rd Fluid Dynamics, Plasma dynamics, and Lasers Conference. doi:10.2514/6.1993-2906.

Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi:10.2514/3.12149.

Roache, P. J. (1998). Verification and validation in computational science and engineering. Hermosa, New Mexico, United States.

Ingram, G. (2009). Basic concepts in turbomachinery. Bookboon, London, United Kingdom.

Mockmore, C. A., & Merryfield, F. (1949). The Banki water turbine. Bulletin Series No. 25, Oregon State University, Corvallis, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Dewi Puspita Sari, Imam Syofii, Aji Putro Prakoso, Muhammad Amsal Ade Saputra, Ismail Thamrin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message