Constrained K-means and Genetic Algorithm-based Approaches for Optimal Placement of Wireless Structural Health Monitoring Sensors
Abstract
Doi: 10.28991/CEJ-2022-08-12-01
Full Text: PDF
Keywords
References
Cha, Y. J., Agrawal, A. K., Kim, Y., & Raich, A. M. (2012). Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures. Expert Systems with Applications, 39(9), 7822–7833. doi:10.1016/j.eswa.2012.01.070.
Kammer, D. C. (1990). Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures. 1990 American Control Conference. doi:10.23919/acc.1990.4791265.
Spencer, B. F., Ruiz-Sandoval, M. E., & Kurata, N. (2004). Smart sensing technology: Opportunities and challenges. Structural Control and Health Monitoring, 11(4), 349–368. doi:10.1002/stc.48.
Lynch, J. P. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38(2), 91–128. doi:10.1177/0583102406061499.
Lin, T. H., Lu, Y. C., & Hung, S. L. (2014). Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device. The Scientific World Journal, 2014, 729027. doi:10.1155/2014/729027.
Kottapalli, V. A., Kiremidjian, A. S., Lynch, J. P., Carryer, E., Kenny, T. W., Law, K. H., & Lei, Y. (2003). Two-tiered wireless sensor network architecture for structural health monitoring. Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures. doi:10.1117/12.482717.
Zhou, G.-D., Yi, T.-H., Xie, M.-X., Li, H.-N., & Xu, J.-H. (2021). Optimal Wireless Sensor Placement in Structural Health Monitoring Emphasizing Information Effectiveness and Network Performance. Journal of Aerospace Engineering, 34(2), 4020112. doi:10.1061/(asce)as.1943-5525.0001226.
Abdulkarem, M., Samsudin, K., Rokhani, F. Z., & A Rasid, M. F. (2020). Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction. Structural Health Monitoring, 19(3), 693–735. doi:10.1177/1475921719854528.
Hung, S. L., Ding, J. T., & Lu, Y. C. (2019). Developing an energy-efficient and low-delay wake-up wireless sensor network-based structural health monitoring system using on-site earthquake early warning system and wake-on radio. Journal of Civil Structural Health Monitoring, 9(1), 103–115. doi:10.1007/s13349-018-0315-2.
Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wireless sensor networks. Journal of Networks, 2(5), 87–97. doi:10.4304/jnw.2.5.87-97.
Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA. doi:10.1109/hicss.2000.926982.
Sasikumar, P., & Khara, S. (2012). K-Means Clustering in Wireless Sensor Networks. 2012 Fourth International Conference on Computational Intelligence and Communication Networks. doi:10.1109/cicn.2012.136.
Ray, A., & De, D. (2016). Energy efficient clustering protocol based on K-means (EECPK-means)-midpoint algorithm for enhanced network lifetime in wireless sensor network. IET Wireless Sensor Systems, 6(6), 181–191. doi:10.1049/iet-wss.2015.0087.
Periyasamy, S., Khara, S., & Thangavelu, S. (2016). Balanced Cluster Head Selection Based on Modified k -Means in a Distributed Wireless Sensor Network. International Journal of Distributed Sensor Networks, 2016(3), 5040475. doi:10.1155/2016/5040475.
Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, United States. doi:10.7551/mitpress/1090.001.0001.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. (1989). Choice Reviews Online, 27(02), 27-0936-27–0936. doi:10.5860/choice.27-0936.
Adeli, H., & Hung, S. L. (1994). Machine learning: neural networks, genetic algorithms, and fuzzy systems. John Wiley & Sons, Hoboken, United States.
Jin, S., Zhou, M., & Wu, A. S. (2003). Sensor network optimization using a genetic algorithm. Proceedings of the 7th world multiconference on systemics, cybernetics and informatics, 27-30July, 2003, Orlando, United States.
Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031–1051. doi:10.1016/j.comnet.2006.06.013.
Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126. doi:10.1002/dac.1336.
Nayak, P., & Vathasavai, B. (2017). Genetic algorithm based clustering approach for wireless sensor network to optimize routing techniques. 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence. doi:10.1109/confluence.2017.7943178.
Pal, R., Yadav, S., Karnwal, R., & Aarti. (2020). EEWC: energy-efficient weighted clustering method based on genetic algorithm for HWSNs. Complex & Intelligent Systems, 6(2), 391–400. doi:10.1007/s40747-020-00137-4.
Bhola, J., Soni, S., & Cheema, G. K. (2020). Genetic algorithm based optimized leach protocol for energy efficient wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1281–1288. doi:10.1007/s12652-019-01382-3.
Khoshraftar, K., & Heidari, B. (2020). A Hybrid Method Based on Clustering to Improve the Reliability of the Wireless Sensor Networks. Wireless Personal Communications, 113(2), 1029–1049. doi:10.1007/s11277-020-07266-6.
Hassan, A. A. hussian, Shah, W. M., Othman, M. F. I., & Hassan, H. A. H. (2020). Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks. International Journal of Electrical and Computer Engineering, 10(2), 1515–1523. doi:10.11591/ijece.v10i2.pp1515-1523.
Middleton, D. (2009). An Introduction to Statistical Communication Theory. McGraw-Hill, New York, United States. doi:10.1109/9780470544112.
Jain, A.K., & Dubes, R.C. (1988). Algorithms for Clustering Data. Prentice Hall, New Jersey, United States. doi:10.2307/1268876.
Forero, P. A., Cano, A., & Giannakis, G. B. (2011). Distributed Clustering Using Wireless Sensor Networks. IEEE Journal of Selected Topics in Signal Processing, 5(4), 707–724. doi:10.1109/jstsp.2011.2114324.
Jae-Hwan Chang, & Tassiulas, L. (n.d.). Energy conserving routing in wireless ad-hoc networks. Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064). doi:10.1109/infcom.2000.832170.
Li, Q., Aslam, J., & Rus, D. (2001). Hierarchical power-aware routing in sensor networks. Proceedings of the DIMACS workshop on pervasive networking, 10, No. 381677.381687, 21 May, 2001, New Jersey, United States.
DOI: 10.28991/CEJ-2022-08-12-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ching-Yun Kao, Jyun-Wei Huang, Shih-Lin Hung
This work is licensed under a Creative Commons Attribution 4.0 International License.