Strength Characteristic of Lightweight Modular Block (LMB) Element using Stabilized Dredged Soil-EPS
Abstract
Doi: 10.28991/CEJ-2023-09-03-014
Full Text: PDF
Keywords
References
Harianto, T., Muhiddin, A. B., & Arsyad, A. (2022, December). Effect of eucalyptus pellita timber-pvd hybrid pile as a vertical drain on soft soil. In IOP Conference Series: Earth and Environmental Science 1117(1), 012012. doi:10.1088/1755-1315/1117/1/012012.
Sheikh, I. R., & Shah, M. Y. (2021). State-of-the-Art Review on the Role of Geocells in Soil Reinforcement. Geotechnical and Geological Engineering, 39(3), 1727–1741. doi:10.1007/s10706-020-01629-3.
Palmeira, E. M., Tatsuoka, F., Bathurst, R. J., Stevenson, P. E., & Zornberg, J. G. (2008). Advances in geosynthetics materials and applications for soil reinforcement and environmental protection works. Electronic Journal of Geotechnical Engineering, 13, 1-38.
Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.
Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100–116. doi:10.1016/j.conbuildmat.2011.11.045.
Harianto, T., Hayashi, S., Du, Y.J., Suetsugu, D. (2008). Experimental Investigation on Strength and Mechanical Behavior of Compacted Soil-fiber Mixtures. Geosynthetics in Civil and Environmental Engineering. Springer, Berlin, Germany. doi:10.1007/978-3-540-69313-0_75.
Zhang, R. J., Lu, Y. T., Tan, T. S., Phoon, K. K., & Santoso, A. M. (2014). Long-Term Effect of Curing Temperature on the Strength Behavior of Cement-Stabilized Clay. Journal of Geotechnical and Geoenvironmental Engineering, 140(8). doi:10.1061/(asce)gt.1943-5606.0001144.
Saing, Z., Samang, L., Harianto, T., & Palanduk, J. (2018). Bearing capacity characteristic of subgrade layer quicklime treated laterite soil. MATEC Web of Conferences, 181, 11001. doi:10.1051/matecconf/201818111001.
Hasriana, Samang, L., Djide, M. N., & Harianto, T. (2018). A study on clay soil improvement with Bacillus subtilis bacteria as the road subbase layer. International Journal of GEOMATE, 15(52), 114–120. doi:10.21660/2018.52.97143.
Golait, Y. S., & Patode, A. S. (2015). A New EPS Beads Based lightweight Geomaterial for Backfilling and Embankment Construction. Indian Geotechnical Conference, 17-19 December, 2015, Pune, India.
Stark, D., Arellano, D., Horvarth, J. S., Leschinsky, D. (2004). Geofoam Applications in the Design and Construction of Highway Embankments. National Cooperative Highway Research Program (NCHRP): The National Academies Press, Washington D.C., United States. doi:10.17226/21944.
Khajeh, A., Jamshidi Chenari, R., & Payan, M. (2020). A Review of the Studies on Soil-EPS Composites: Beads and Blocks. Geotechnical and Geological Engineering, 38(4), 3363–3383. doi:10.1007/s10706-020-01252-2.
Ramli Sulong, N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136(20), 1–11. doi:10.1002/app.47529.
Negussey, D., & Jahanandish, M. (1993). Comparison of some engineering properties of expanded polystyrene with those of soils (with discussion and closure). Transportation Research Record, Washington, United States.
Abdelrahman, G. E., Mohamed, H. K., & Ahmed, H. M. (2013). New replacement formations on expansive soils using recycled EPS beads. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics (ICSMGE), 2-6 September, 2013, Paris, France.
Liu, J., Gao, H., & Liu, H. (2009). A New Light-weight Geomaterial–EPS Composite Soil. Halifax, 992-996.
United Nation Environment Program. (2000). The Montreal Protocol on Substances that Deplete the Ozone Layer. Available online: Nairobi. https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol (accessed on February 2023).
Liu, H., Deng, A., & Chu, J. (2006). Effect of different mixing ratios of polystyrene pre-puff beads and cement on the mechanical behaviour of lightweight fill. Geotextiles and Geomembranes, 24(6), 331–338. doi:10.1016/j.geotexmem.2006.05.002.
Miao, L., Wang, F., Han, J., Lv, W., & Li, J. (2013). Properties and Applications of Cement-Treated Sand-Expanded Polystyrene Bead Lightweight Fill. Journal of Materials in Civil Engineering, 25(1), 86–93. doi:10.1061/(asce)mt.1943-5533.0000556.
Chenari, R. J., Fatahi, B., Ghorbani, A., & Alamoti, M. N. (2018). Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash. Geomechanics and Engineering, 14(6), 533–544. doi:10.12989/gae.2018.14.6.533.
Rauf, I., Samang, L., Harianto, T., & Arsyad, A. (2020). Correlation of UCS and CBR on lightweight geocomposite of soil-eps stabilized by waste of buton asphalt. Materials Science Forum, 998, 311–316. doi:10.4028/www.scientific.net/MSF.998.311.
Sanjaya, E. T., Lukman, M., & Tanan, B. (2020). Analysis of Sediment Volume Based on Measurement Results with an Echosounder in the Bili-bili Reservoir, Gowa Regency. Paulus Civil Engineering Journal, 2(3), 192–196. doi:10.52722/pcej.v2i3.140.
Reddy, B. V. V., & Jagadish, K. S. (1993). The static compaction of soils. Géotechnique, 43(2), 337–341. doi:10.1680/geot.1993.43.2.337.
Hafez, M. A., Asmani, M. D., & Nurbaya, S. (2010). Comparison between static and dynamic laboratory compaction methods. Electronic Journal of Geotechnical Engineering, 15(1), 1641-1650.
Sharma, B., Sridharan, A., & Talukdar, P. (2016). Static method to determine compaction characteristics of fine-grained soils. Geotechnical Testing Journal, 39(6), 1048–1055. doi:10.1520/GTJ20150221.
Ghoddousi, P., Shirzadi Javid, A. A., Sobhani, J., & Zaki Alamdari, A. (2016). A new method to determine initial setting time of cement and concrete using plate test. Materials and Structures / Materiaux et Constructions, 49(8), 3135–3142. doi:10.1617/s11527-015-0709-0.
Abdelrahman, G. E. (2010). Lightweight fill using sand, polystyrene beads and cement. Proceedings of the Institution of Civil Engineers - Ground Improvement, 163(2), 95–100. doi:10.1680/grim.2010.163.2.95.
DOI: 10.28991/CEJ-2023-09-03-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nurul Marfu'ah As, Tri Harianto, Achmad Bakri Muhiddin, Rita Irmawaty

This work is licensed under a Creative Commons Attribution 4.0 International License.