Assessment of a Decision-Making Model for Monitoring the Success of a Project for Smart Buildings

Serag Amhaimedi, Sepanta Naimi, Sura Alsallami

Abstract


Objective: To express the usage of intelligent concepts in the architectural building construction field that are primarily concerned with reducing building energy use. Improved energy-saving methods and the use of environmentally friendly design principles are essential in this field. This type of managerial decision-making is necessary for the success of these types of projects. Methods: monitoring the performance of intelligent buildings use the cost variance (CV) and schedule variation as standard metrics to track the progress of a project based on the save energy concept. Also, this research conducted a comparative study on Building Information Modelling (BIM) and (MCDM) decision-making limitations as presented in the article. Analysis: the conventional technique, on the other hand, is unable to offer data on variance from typical performance levels. The main point based on Delphi results of construction cost variables has been observed 19 effective factors. Finding and Novelty: The RII observed that the most effective aspects of an intelligent building are the number of floors in the building, the kind of structural design, and the size of the shadow cast on the surface of the building. The Multi-Criteria Decision Maker (MCDM) observed significant differences in planned value (PV) and actual value (AC) results. In addition, as a result of the current approach, it is possible to track project costs and timelines more precisely.

 

Doi: 10.28991/CEJ-2023-09-01-010

Full Text: PDF


Keywords


Intelligent Building; Multi-Criteria Decision Maker; MCDM; MATLAB Code.

References


Wilson, M. T. (2004). Technology advancement in intelligent buildings: a through preplanning process pertaining to long-term maintainability. PhD Thesis, Georgia Institute of Technology, Atlanta, United States.

Omar, O. (2018). Intelligent building, definitions, factors and evaluation criteria of selection. Alexandria Engineering Journal, 57(4), 2903–2910. doi:10.1016/j.aej.2018.07.004.

Belani, D., Makwana, A. H., Pitroda, J., & Vyas, C. M. (2014). Intelligent building new era of today’s world. Trends and Challenges of Civil Engineering in Today‟s Transforming World, March, 1–16. doi:10.13140/RG.2.1.1723.4965.

Tih-Ju, C., An-Pi, C., Chao-Lung, H., & Jyh-Dong, L. (2014). Intelligent Green Buildings Project Scope Definition Using Project Definition Rating Index (PDRI). Procedia Economics and Finance, 18(14), 17–24. doi:10.1016/s2212-5671(14)00908-3.

Froufe, M. M., Chinelli, C. K., Guedes, A. L. A., Haddad, A. N., Hammad, A. W. A., & Soares, C. A. P. (2020). Smart buildings: Systems and drivers. Buildings, 10(9), 1–20. doi:10.3390/buildings10090153.

Moses, T., Heesom, D., & Oloke, D. (2015). The Impact of Building Information Modelling (BIM) for Contractor Costing in Offsite Construction Projects in the UK. Modular and Offsite Construction (MOC) Summit Proceedings, 331–338. doi:10.29173/mocs191.

Aljohani, A. (2017). Construction Projects Cost Overrun: What Does the Literature Tell Us? International Journal of Innovation, Management and Technology, 8(2), 137–143. doi:10.18178/ijimt.2017.8.2.717.

Silvius, A. J. G., & Schipper, R. P. J. (2014). Sustainability in Project Management Competencies: Analyzing the Competence Gap of Project Managers. Journal of Human Resource and Sustainability Studies, 02(02), 40–58. doi:10.4236/jhrss.2014.22005.

Silvius, A. J. G., & Schipper, R. P. J. (2014). Sustainability in project management: A literature review and impact analysis. Social Business, 4(1), 63–96. doi:10.1362/204440814x13948909253866.

Misopoulos, F., Michaelides, R., Salehuddin, M. A., Manthou, V., & Michaelides, Z. (2018). Addressing organisational pressures as drivers towards sustainability in manufacturing projects and project management methodologies. Sustainability (Switzerland), 10(6). doi:10.3390/su10062098.

Padickakudy, M. (2019). Evaluating the Importance of Sustainability in the Project Management Process. Master Thesis, Coventry University, Coventry, United Kingdom.

Silvius, G. (2016). Considering Sustainability in Project Management Processes. Project Management, 1927–1951. doi:10.4018/978-1-5225-0196-1.ch096.

Marcelino-Sádaba, S., González-Jaen, L. F., & Pérez-Ezcurdia, A. (2015). Using project management as a way to sustainability. from a comprehensive review to a framework definition. Journal of Cleaner Production, 99, 1–16. doi:10.1016/j.jclepro.2015.03.020.

Persson, U., Landin, A., Olander, S., & Persson, M. H. (2008). Sustainable construction management at a project level: A modified environmental management system structure. In World sustainable building conference. doi:10.13140/2.1.3223.5840.

Salleh, R. (2009). Critical success factors of project management for Brunei construction projects: improving project performance. PhD Thesis, Queensland University of Technology, Brisbane City, Australia.

de la Cruz López, M. P., Cartelle Barros, J. J., Del Caño Gochi, A., & Lara Coira, M. (2021). New approach for managing sustainability in projects. Sustainability (Switzerland), 13(13), 1–27. doi:10.3390/su13137037.

Hui, S. C. M. (2004). Sustainable design and operation of construction site offices. Proceeding of the Shenyang-Hong Kong Joint Symposium 2004, 29-30 July, 2004, Shenyang, China.

Pocock, J., Steckler, C., & Hanzalova, B. (2016). Improving Socially Sustainable Design and Construction in Developing Countries. Procedia Engineering, 145, 288–295. doi:10.1016/j.proeng.2016.04.076.

Himanen, M. (2004). The intelligence of intelligent buildings. Intelligent Buildings: Design, Management and Operation, 25-52, Thomas Telford, London, united Kingdom.

Wollos, K. G., Mui, K., Pershing, J., & Oetjen, E. (2011). Enhancing energy efficiency and green building design in section 202 and section 811 programs. Office of Policy Development and Research, US Department of Housing and Urban Development, Washington, United States.

Górecki, J., & Núñez-Cacho, P. (2022). Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case. Applied Sciences (Switzerland), 12(12), 6132. doi:10.3390/app12126132.

Schreyer, M., Benning, P., Ryd, N., Tulke, J., Jaeger, J., & Brandt, T. (2010). A Smart Decision Making Framework for Building Information Models. European Commission, Brussels, Belgium.

Mashayekhi, A., & Heravi, G. (2020). A decision-making framework opted for smart building’s equipment based on energy consumption and cost trade-off using BIM and MIS. Journal of Building Engineering, 32, 101653. doi:10.1016/j.jobe.2020.101653.

Vijayan, D. S., Rose, A. L., Arvindan, S., Revathy, J., & Amuthadevi, C. (2020). Automation systems in smart buildings: a review. Journal of Ambient Intelligence and Humanized Computing, 1–13. doi:10.1007/s12652-020-02666-9.

Tabatabaee, S., Mahdiyar, A., & Ismail, S. (2021). Towards the success of Building Information Modelling implementation: A fuzzy-based MCDM risk assessment tool. Journal of Building Engineering, 43, 103117. doi:10.1016/j.jobe.2021.103117.

Hsu, H. C., Chang, S., Chen, C. C., & Wu, I. C. (2020). Knowledge-based system for resolving design clashes in building information models. Automation in Construction, 110, 103001 103001. doi:10.1016/j.autcon.2019.103001.

Muller, M. F., Esmanioto, F., Huber, N., Loures, E. R., & Canciglieri, O. (2019). A systematic literature review of interoperability in the green Building Information Modeling lifecycle. Journal of Cleaner Production, 223, 397–412. doi:10.1016/j.jclepro.2019.03.114.

Fu, F. (2018). Design and analysis of tall and complex structures. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2015-0-06071-3.

Heaton, J., Parlikad, A. K., & Schooling, J. (2019). A Building Information Modelling approach to the alignment of organisational objectives to Asset Information Requirements. Automation in Construction, 104, 14–26. doi:10.1016/j.autcon.2019.03.022.

Changsaar, C., Abidin, N. I., Khoso, A. R., Luenhui, L., Yaoli, X., & Hunchuen, G. (2022). Optimising energy performance of an Eco-Home using Building Information Modelling (BIM). Innovative Infrastructure Solutions, 7(2), 1-14. doi:10.1007/s41062-022-00747-6.

Yin, X., Liu, H., Chen, Y., & Al-Hussein, M. (2019). Building information modelling for off-site construction: Review and future directions. Automation in Construction, 101, 72–91. doi:10.1016/j.autcon.2019.01.010.

Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285, 124854. doi:10.1016/j.jclepro.2020.124854.

Seyis, S. (2020). Mixed method review for integrating building information modeling and life-cycle assessments. Building and Environment, 173, 106703. doi:10.1016/j.buildenv.2020.106703.

Sadeghifam, A. N., Meynagh, M. M., Tabatabaee, S., Mahdiyar, A., Memari, A., & Ismail, S. (2019). Assessment of the building components in the energy efficient design of tropical residential buildings: An application of BIM and statistical Taguchi method. Energy, 188, 116080. doi:10.1016/j.energy.2019.116080.

Zolfani, H. S., Pourhossein, M., Yazdani, M., & Zavadskas, E. K. (2018). Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alexandria Engineering Journal, 57(1), 357–365. doi:10.1016/j.aej.2016.11.002.

Ghosh, S., & Das, A. (2019). Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sensing Applications: Society and Environment, 13, 191–203. doi:10.1016/j.rsase.2018.10.014.

Zhao, S., Zhang, P., & Li, W. (2021). A study on evaluation of influencing factors for sustainable development of smart construction enterprises: Case study from china. Buildings, 11(6), 221. doi:10.3390/buildings11060221.

Harmon, E. Y., & Gillen, R. W. (2022). Comparison of the Brief Interview of Mental Status (BIMS) and Montreal Cognitive Assessment (MoCA) for Identifying Cognitive Impairments and Predicting Rehabilitation Outcomes in an Inpatient Rehabilitation Facility. PM&R. doi:10.1002/pmrj.12908.

Dias, P. D. R., & Ergan, S. (2020). Owner requirements in as-built BIM deliverables and a system architecture for FM-specific BIM representation. Canadian Journal of Civil Engineering, 47(2), 215–227. doi:10.1139/cjce-2018-0703.

Shrivastava, H., & Akhtar, S. (2019). Development of a building information modeling tool for green sustainable building design: A review. AIP Conference Proceedings, 2158(1), 20026. doi:10.1063/1.5127150.

Zahedi, A., Abualdenien, J., Petzold, F., & Borrmann, A. (2022). Bim-Based Design Decisions Documentation Using Design Episodes, Explanation Tags, and Constraints. Journal of Information Technology in Construction, 27, 756–780. doi:10.36680/j.itcon.2022.037.

Jang, R., & Collinge, W. (2020). Improving BIM asset and facilities management processes: A Mechanical and Electrical (M&E) contractor perspective. Journal of Building Engineering, 32, 101540. doi:10.1016/j.jobe.2020.101540.

Ma, G., & Wu, Z. (2020). BIM-based building fire emergency management: Combining building users’ behavior decisions. Automation in Construction, 109, 102975. doi:10.1016/j.autcon.2019.102975.

Xu, J., Shi, Y., Xie, Y., & Zhao, S. (2019). A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction. Journal of Cleaner Production, 229, 308–324. doi:10.1016/j.jclepro.2019.04.158.

Wu, Z., & Ma, G. (2022). NLP-Based Approach for Automated Safety Requirements Information Retrieval from Project Documents. SSRN, 4242757.

Onososen, A., & Musonda, I. (2022). Barriers to BIM-Based Life Cycle Sustainability Assessment for Buildings: An Interpretive Structural Modelling Approach. Buildings, 12(3), 324. doi:10.3390/buildings12030324.

Huzaimi Abd Jamil, A., & Syazli Fathi, M. (2019). Contractual issues for Building Information Modelling (BIM)-based construction projects: An exploratory case study. IOP Conference Series: Materials Science and Engineering, 513(1), 12035. doi:10.1088/1757-899X/513/1/012035.

Schiavi, B., Havard, V., Beddiar, K., & Baudry, D. (2022). BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Automation in Construction, 134, 104054. doi:10.1016/j.autcon.2021.104054.

Tan, T., Mills, G., Papadonikolaki, E., & Liu, Z. (2021). Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Automation in Construction, 121, 103451. doi:10.1016/j.autcon.2020.103451.

Haruna, A., Shafiq, N., & Montasir, O. A. (2021). Building information modelling application for developing sustainable building (Multi criteria decision making approach). Ain Shams Engineering Journal, 12(1), 293–302. doi:10.1016/j.asej.2020.06.006.

Carbonari, A., Corneli, A., Di Giuda, G., Ridolfi, L., & Villa, V. (2018). BIM-Based Decision Support System for the Mangement of Large Building Stocks. Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC). doi:10.22260/isarc2018/0049.

Chen, L., & Pan, W. (2015). A BIM-integrated Fuzzy Multi-criteria Decision Making Model for Selecting Low-Carbon Building Measures. Procedia Engineering, 118, 606–613. doi:10.1016/j.proeng.2015.08.490.

Mendoza, G.A., & Prabhu, R. (2000). Multiple criteria decision making approaches to assessing forest sustainability using criteria and indicators: A case study. Forest Ecology and Management, 131(1–3), 107–126. doi:10.1016/S0378-1127(99)00204-2.

Pavlovskis, M., Antucheviciene, J., & Migilinskas, D. (2016). Application of MCDM and BIM for evaluation of asset redevelopment solutions. Studies in Informatics and Control, 25(3), 293–302. doi:10.24846/v25i3y201603.

Bank, L. C., McCarthy, M., Thompson, B. P., & Menassa, C. C. (2010). Integrating BIM with system dynamics as a decision-making framework for sustainable building design and operation. Proceedings of the first international conference on sustainable urbanization (ICSU), 15-17 December, 2010, Hong Kong, China.

Chen, G., Yan, Z., Chen, J., & Li, Q. (2022). Building information modeling (BIM) outsourcing decisions of contractors in the construction industry: Constructing and validating a conceptual model. Developments in the Built Environment, 12, 100090. doi:10.1016/j.dibe.2022.100090.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 serag AMHAIMED AMHAIMED

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message