Simulation of Hybrid Mesh Turbomachinery using CFD and Additive Technologies
Downloads
Doi: 10.28991/CEJ-2022-08-12-011
Full Text: PDF
[2] Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of mesh turbomachinery based on the Euler turbine. Energies, 14(17), 5292. doi:10.3390/en14175292.
[3] Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of jet systems for developing mesh turbomachines. International Review of Mechanical Engineering, 15(7), 335–345. doi:10.15866/ireme.v15i7.21163.
[4] Zeng, C., Xiao, Y., Luo, Y., Zhang, J., Wang, Z., Fan, H., & Ahn, S. H. (2018). Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation. Renewable Energy, 125, 270-282. doi:10.1016/j.renene.2018.02.075.
[5] Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2020). Prototyping mesh turbine with the jet control system. Periódico Tchíª Química, 17, 1160-117.
[6] Sazonov, Y. A., Mokhov, M. A., Tumanyan, K.A., Voronova, V. V., & Balaka, N. N. (2022). The utility model patent of the RF No. 213280 Useful model patent of the Russian Federation No 213280. Moscow, Russia. (In Russian).
[7] Yan, J., Zhang, C., Huo, S., Chai, X., Liu, Z., & Yan, K. (2021). Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese Journal of Aeronautics, 34(8), 245–257. doi:10.1016/j.cja.2020.09.026.
[8] Di Caprio, F., Acanfora, V., Franchitti, S., Sellitto, A., & Riccio, A. (2019). Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing. Aerospace, 6(6), 71. doi:10.3390/aerospace6060071.
[9] Boccini, E., Furferi, R., Governi, L., Meli, E., Ridolfi, A., Rindi, A., & Volpe, Y. (2019). Toward the integration of lattice structure-based topology optimization and additive manufacturing for the design of turbomachinery components. Advances in Mechanical Engineering, 11(8). doi:10.1177/1687814019859789.
[10] Zhang, Y., Li, F., & Jia, D. (2020). Lightweight design and static analysis of lattice compressor impeller. Scientific Reports, 10(1). doi:10.1038/s41598-020-75330-z.
[11] Magerramova, L., Volkov, M., Afonin, A., Svinareva, M., & Kalinin, D. (2018). Application of light lattice structures for gas turbine engine fan blades. Proccedings of the 31st Congress of the International Council of the Aeronautical Sciences, 9-14 September, 2018, Belo Horizonte, Brazil.
[12] Sajan, K. C., & Gautam, D. (2021). Progress in sustainable structural engineering: a review. Innovative Infrastructure Solutions, 6(2), 1-23. doi:10.1007/s41062-020-00419-3.
[13] Schülein, E., & Guyot, D. (2007). Wave Drag Reduction Approach for Lattice Wings at High Speeds. In New Results in Numerical and Experimental Fluid Mechanics VI, 332-339. Springer, Berlin, Germany. doi:10.1007/978-3-540-74460-3_41.
[14] Surawski, N. C., Macdonald, L. M., Baldock, J. A., Sullivan, A. L., Roxburgh, S. H., & Polglase, P. J. (2020). Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel. Science of the total environment, 698, 134306.
[15] Ma, T., Wang, X., Qiao, N., Zhang, Z., Fu, J., & Bao, M. (2022). A Conceptual Design and Optimization Approach for Distributed Electric Propulsion eVTOL Aircraft Based on Ducted-Fan Wing Unit. Aerospace, 9(11), 690. doi:10.3390/aerospace9110690.
[16] Kazemi, E., & Luo, M. (2022). A comparative study on the accuracy and conservation properties of the SPH method for fluid flow interaction with porous media. Advances in Water Resources, 165, 104220. doi:10.1016/j.advwatres.2022.104220.
[17] Xue, Y., Wang, L., & Fu, S. (2018). Detached-eddy simulation of supersonic flow past a spike-tipped blunt nose. Chinese Journal of Aeronautics, 31(9), 1815–1821. doi:10.1016/j.cja.2018.06.016.
[18] Anbu Serene Raj, C., Narasimhavaradhan, M., Vaishnavi, N., Arunvinthan, S., Al Arjani, A., & Nadaraja Pillai, S. (2020). Aerodynamics of ducted re-entry vehicles. Chinese Journal of Aeronautics, 33(7), 1837–1849. doi:10.1016/j.cja.2020.02.019.
[19] Kini, C. R., Purohit, S., Bhagat, K. K., & Shenoy B., S. (2019). Effect of helix angle and cross section of helicoidal ducts in gas turbine blade cooling. International Review of Mechanical Engineering, 13(2), 87–96. doi:10.15866/ireme.v13i2.14942.
[20] Kini, C. R., Purohit, S., Bhagat, K. K., & Satish Shenoy, B. (2018). Heat transfer augmentation and cooling of a turbine blade using an innovative converging-diverging ducts - A CFD study. International Review of Mechanical Engineering, 12(7), 570–579. doi:10.15866/ireme.v12i7.15125.
[21] Yeranee, K., & RAO, Y. (2021). A review of recent studies on rotating internal cooling for gas turbine blades. Chinese Journal of Aeronautics, 34(7), 85–113. doi:10.1016/j.cja.2020.12.035.
[22] Deng, Q., Wang, H., He, W., & Feng, Z. (2022). Cooling Characteristic of a Wall Jet for Suppressing Crossflow Effect under Conjugate Heat Transfer Condition. Aerospace, 9(1). doi:10.3390/aerospace9010029.
[23] Kopiev, V. F., Belyaev, I. V., Dunayevsky, A. I., Pukhov, A. A., & Trofimovskiy, I. L. (2022). The Patent of the Russian Federation No. 2776193. Supersonic Aircraft, Bulletin 20, Moscow, Russia. (In Russian).
[24] Ji, Z., Zhang, H., & Wang, B. (2021). Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine. Aerospace Science and Technology, 113, 106694. doi:10.1016/j.ast.2021.106694.
[25] Donateo, T., Spada Chiodo, L., Ficarella, A., & Lunaro, A. (2022). Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility. Energies, 15(20), 7598. doi:10.3390/en15207598.
[26] Liu, B., Gao, Y., Gao, L., Zhang, J., Zhu, Y., Zang, X., & Zhao, J. (2022). Design and Experimental Study of a Turbojet VTOL Aircraft with One-Dimensional Thrust Vectoring Nozzles. Aerospace, 9(11), 678. doi:10.3390/aerospace9110678.
[27] Xia, J., & Zhou, Z. (2022). Model Predictive Control Based on ILQR for Tilt-Propulsion UAV. Aerospace, 9(11), 688. doi:10.3390/aerospace9110688.
[28] Wang, R., Zhang, G., Ying, P., & Ma, X. (2022). Effects of Key Parameters on Airfoil Aerodynamics Using Co-Flow Jet Active Flow Control. Aerospace, 9(11), 649. doi:10.3390/aerospace9110649.
[29] Decaix, J., & Münch-Alligné, C. (2022). Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox. Energies, 15(19), 7451. doi:10.3390/en15197451.
[30] Asgarnejad, S., Kouhikamali, R., & Hassani, M. (2022). Triple-Nozzle Thermo-Compressor: Geometrical Investigation and Comparison with Single-Nozzle Thermo-Compressor. Journal of Applied Fluid Mechanics, 15(6), 1693–1702. doi:10.47176/jafm.15.06.1316.
[31] Seitz, A., Nickl, M., Troeltsch, F., & Ebner, K. (2022). Initial Assessment of a Fuel Cell”Gas Turbine Hybrid Propulsion Concept. Aerospace, 9(2). doi:10.3390/aerospace9020068.
[32] Zhou, S., Ma, H., Ma, Y., Zhou, C., & Hu, N. (2021). Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine. Aerospace Science and Technology, 111, 106559 10 1016 2021 106559. doi:10.1016/j.ast.2021.106559.
[33] Sazonov, Y. A. (2012). Fundamentals of calculation and design of pump-ejector installations. SUE "Oil and Gas Publishing House” of Gubkin University: Moscow, Russia.
[34] Sazonov, Y., Mokhov, M., Tumanyan, K., Frankov, M., Voronova, V., & Balaka, N. Patent for utility model of the Russian Federation No. 214113. Jet Installation. Application, 2022116651, Moscow, Russia. (In Russian).
[35] Farassat, F., & Brentner, K. S. (1998). The acoustic analogy and the prediction of the noise of rotating blades. Theoretical and computational fluid dynamics, 10(1), 155-170. doi:10.1007/s001620050056.
[36] Sultanian, B. K. (2019). Logan's Turbomachinery: Flowpath Design and Performance Fundamentals. CRC Press, Florida, United States. doi:10.1201/9780203911600.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.