Analysing the Effect of Cassava Flour as a Mixture on the Physical, Mechanical, and Durability Properties of High-Strength Concrete
Abstract
Doi: 10.28991/CEJ-2022-08-12-015
Full Text: PDF
Keywords
References
Kalra, M., & Mehmood, G. (2018). A Review paper on the Effect of different types of coarse aggregate on Concrete. IOP Conference Series: Materials Science and Engineering, 431, 082001. doi:10.1088/1757-899x/431/8/082001.
Onikeku, O., Shitote, S. M., Mwero, J., & Adedeji, A. A. (2019). Evaluation of Characteristics of Concrete Mixed with Bamboo Leaf Ash. The Open Construction & Building Technology Journal, 13(1), 67–80. doi:10.2174/1874836801913010067.
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.
Mohammed, T. U., Bin Harun, M. Z., & Joy, J. A. (2022). Effect of sand-to-aggregate volume ratio on durability of concrete. Innovative Infrastructure Solutions, 7(5), 1-12. doi:10.1007/s41062-022-00915-8.
Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.
Schmidt, W., Olonade, K. A., Mbugua, R. N., Lenz, F. J., & Ngassam, I. T. (2019). Bio-based rheology modifiers for high performance concrete–possible modes of actions and case study for cassava starch in West Africa. In International Conference on Application of Superabsorbent Polymers & Other New Admixtures towards Smart Concrete, 158-166. doi:10.1007/978-3-030-33342-3_17.
Aïtcin, P. C. (2016). Supplementary cementitious materials and blended cements. Science and Technology of Concrete Admixtures, Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-08-100693-1.00004-7.
Guades, E. J. (2019). Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete. European Journal of Environmental and Civil Engineering, 23(6), 693–709. doi:10.1080/19648189.2017.1304276.
Kynclova, M., Fiala, C., & Hajek, P. (2011). High performance concrete as a sustainable material. International Journal of Sustainable Building Technology and Urban Development, 2(1), 63–68. doi:10.5390/SUSB.2011.2.1.063.
Reddy, M. V. S., Sasi, K., Ashalatha, K., & Madhuri, M. (2017). Groundnut Shell Ash as Partial Replacement of Cement in Concrete. Research Journal of Science and Technology, 9(3), 313. doi:10.5958/2349-2988.2017.00056.0.
Koteng, D. O., & Chen, C. T. (2015). Strength development of lime-pozzolana pastes with silica fume and fly ash. Construction and Building Materials, 84, 294–300. doi:10.1016/j.conbuildmat.2015.03.052.
Abdalla, T. A., Koteng, D. O., Shitote, S. M., & Matallah, M. (2022). Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results in Engineering, 16(September), 100666. doi:10.1016/j.rineng.2022.100666.
Herring, T. C., Nyomboi, T., & Thuo, J. N. (2022). Ductility and cracking behavior of reinforced coconut shell concrete beams incorporated with coconut shell ash. Results in Engineering, 14(March), 100401. doi:10.1016/j.rineng.2022.100401.
Gupta, C. K., Sachan, A. K., & Kumar, R. (2022). Utilization of sugarcane bagasse ash in mortar and concrete: A review. Materials Today: Proceedings, 65, 798–807. doi:10.1016/j.matpr.2022.03.304.
Saraswathy, V., Karthick, S., Lee, H. S., Kwon, S.-J., & Yang, H.-M. (2017). Comparative Study of Strength and Corrosion Resistant Properties of Plain and Blended Cement Concrete Types. Advances in Materials Science and Engineering, 2017, 1–14. doi:10.1155/2017/9454982.
Okumu, V. A. (2018). Suitability of the Kenyan Blended Portland Cements for Structural Concrete Production. Journal of Sustainable Research in Engineering, 4(2), 55-68.
Ahmed, A. (2019). Chemical Reactions in Pozzolanic Concrete. Modern Approaches on Material Science, 1(4), 128–133,. doi:10.32474/mams.2019.01.000120.
Hilal, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications, 3–24, IntechOpen, London, United Kingdom. doi:10.5772/64574.
Chu, S. H. (2019). Effect of paste volume on fresh and hardened properties of concrete. Construction and Building Materials, 218, 284–294. doi:10.1016/j.conbuildmat.2019.05.131.
Akindahunsi, A. A. (2019). Investigation into the use of extracted starch from cassava and maize as admixture on the creep of concrete. Construction and Building Materials, 214, 659–667. doi:10.1016/j.conbuildmat.2019.04.110.
Gupta, S., & Kua, H. W. (2019). Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Science of the Total Environment, 662, 952-962. doi:10.1016/j.scitotenv.2019.01.269.
Khayat, K. H., & Mikanovic, N. (2012). Viscosity-enhancing admixtures and the rheology of concrete. Understanding the Rheology of Concrete, 209–228. Woodhead Publishing, Sawston, United Kingdom doi:10.1533/9780857095282.2.209.
Ortiz-Álvarez, N., Lizarazo-Marriaga, J., Brandão, P. F. B., Santos-Panqueva, Y., & Carrillo, J. (2021). Rheological properties of cement-based materials using a biopolymer viscosity modifying admixture (BVMA) under different dispersion conditions. Cement and Concrete Composites, 124, 104224. doi:10.1016/j.cemconcomp.2021.104224.
Kannur, B., & Chore, H. S. (2021). Utilization of sugarcane bagasse ash as cement-replacing materials for concrete pavement: An overview. Innovative Infrastructure Solutions, 6(4), 1-17. doi:10.1007/s41062-021-00539-4.
Oluwabusayo Oni, D., Mwero, J., & Kabubo, C. (2020). Experimental Investigation of the Physical and Mechanical Properties of Cassava Starch Modified Concrete. The Open Construction and Building Technology Journal, 13(1), 331–343. doi:10.2174/1874836801913010331.
Faqe, H., Dabaghh, H., & Mohammed, A. (2020). Natural Admixture as an Alternative for Chemical Admixture in Concrete Technology: A Review. The Journal of the University of Duhok, 32(2), 301–308. doi:10.26682/csjuod.2020.23.2.24.
Abd, S. M., Hamood, Q. Y., & Khamees. (2016). Effect of Using Corn Starch As Concrete Admixture. International Journal of Engineering Research and Science & Technology, 5(3).
Adeleke, B. K., GARBA, M., Alfa, N. M., & Dahiru, D. D. (2020). Effect of Sorghum Flour on the Properties of Concrete Journal of Environmental Technology, 2(1), 125-129.
Mbugua, R., Salim, R., & Ndambuki, J. (2016). Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar. Case Studies in Construction Materials, 5, 100–111. doi:10.1016/j.cscm.2016.09.002.
Uchechukwu Elinwa, A. (2017). Effects of Gum Arabic Admixture on the Mechanical Strengths of Cement Paste and Concrete. Advancements in Materials, 1(1), 25. doi:10.31058/j.am.2017.11003.
Anandaraj, S., Karthik, S., Vijaymohan, S., Rampradheep, G. S., Indhiradevi, P., & Anusha, G. (2022). Effects of using white flour, zinc oxide and zinc ash as an admixture in mortar and concrete. Materials Today: Proceedings, 52, 1788–1793. doi:10.1016/j.matpr.2021.11.447.
Kuznetsov, E., Pustovgar, A., Ivanova, I., Medvedev, V., & Elenova, A. (2018). Use of Silverbond quartz flour in the design of self-compacting concrete mixtures. IOP Conference Series: Materials Science and Engineering, 365(3). doi:10.1088/1757-899X/365/3/032070.
Alhozaimy, A., Fares, G., Alawad, O. A., & Al-Negheimish, A. (2015). Heat of hydration of concrete containing powdered scoria rock as a natural pozzolanic material. Construction and Building Materials, 81, 113–119. doi:10.1016/j.conbuildmat.2015.02.011.
Kone, B., Mwero, J. N., & Ronoh, E. K. (2022). Experimental Effect of Cassava Starch and Rice Husk Ash on Physical and Mechanical Properties of Concrete. International Journal of Engineering Trends and Technology, 70(2), 343–350. doi:10.14445/22315381/IJETT-V70I2P239.
Akpokodje, O. I., Agbi, G. G., & Uguru, H. (2020). Evaluation of Cassava Effluent as Organic Admixture in Concrete Production for Farm Structures. Turkish Journal of Agricultural Engineering Research, 271–282. doi:10.46592/turkager.2020.v01i02.005.
Okafor, F. O. (2010). The Performance of Cassava Flour As a Water-Reducing Admixture for Concrete. Nigerian Journal of Technology, 29(2), 106–112.
FAO. (2015). Food Outlook-Biannual report on Global Food markets Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: https://www.fao.org/fileadmin/user_upload/newsroom/docs/Food%20Outlook%20 October%202015.pdf (accessed on August 2022).
Surtono, A., Aprilliana, P., Supriyanto, A., Pauzi, G. A., Junaidi, Suciyati, S. W., & Warsito. (2019). Measuring of Cassava Starch Content by Using Strain Gauge. Journal of Physics: Conference Series, 1338(1). doi:10.1088/1742-6596/1338/1/012019.
Akindahunsi, A. A., & Uzoegbo, H. C. (2015). Strength and Durability Properties of Concrete with Starch Admixture. International Journal of Concrete Structures and Materials, 9(3), 323–335. doi:10.1007/s40069-015-0103-x.
Akindahunsi, A. A., & Schmidt, W. (2017). Effect of cassava starch on shrinkage characteristics of concrete. African Journal of Science, Technology, Innovation and Development, 11(4), 441–447. doi:10.1080/20421338.2017.1380580.
Ikoko, O. (2021). Evaluating the Compressive Strength of Wood Shavings-Cassava Starch-Sodium Chloride Hybridized Concrete. Saudi Journal of Engineering Technology, 6(11), 408-413. doi:10.36348/sjet.2021.v06i11.005.
Sybis, M., & Konował, E. (2022). Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites. Materials, 15(21), 7604. doi:10.3390/ma15217604.
Souza, J. M. de, Ramos Filho, R. E. B., Duarte, J. B., Silva, V. M. da, Rêgo, S. R. do, Lucena, L. de F. L., & Acchar, W. (2021). Mechanical and durability properties of compressed stabilized earth brick produced with cassava wastewater. Journal of Building Engineering, 44(May). doi:10.1016/j.jobe.2021.103290.
Adedokun, S. I., Adebisi, A. N., Omileye, A. A., Afolayiwola, T. A., & Ayinde, R. B. The Aftermath of Cassava Effluent in the Behaviour of Concrete. Journal of Advanced Cement & Concrete Technology, 4(3), 1-10. doi:10.5281/zenodo.5781930.
Akpokodje, O. I., & Uguru, H. (2019). Effect of fermented cassava waste water as admixture on some physic-mechanical properties of solid sandcrete blocks. International Journal of Engineering Trends and Technology (IJETT), 67(10), 216-222.
Schmidt, W., Tchetgnia Ngassam, I. L., Olonade, K. A., Mbugua, R., & Kühne, H. C. (2018). Plant based chemical admixtures – potentials and effects on the performance of cementitious materials. RILEM Technical Letters, 3(2018), 124–128. doi:10.21809/rilemtechlett.2018.83.
Sinkhonde, D., Rimbarngaye, A., Kone, B., & Herring, T. C. (2022). Representativity of morphological measurements and 2-d shape descriptors on mineral admixtures. Results in Engineering, 13(February), 100368. doi:10.1016/j.rineng.2022.100368.
ASTM C33/C33M – 18. (2018). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM D75/D75-19. (2019). Standard Method of Test for Sampling of Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/D0075_D0075M-19.
ASTM C128-01. (2017). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-01.
ASTM C29/C29M-09. (2016). Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0029_C0029M-09.
ACI 211.4R-08. (2008). Guide for Selecting Proportions for High-strength Concrete Using Portland Cement and Other Cementitious Materials. American Concrete Institute, Michigan, United States.
BS EN 206:2013. (2013). Concrete - Specification, performance, production and conformity. British Standard Institute (BSI), London, United Kingdom.
BS EN 196-3. (2005). Methods of testing cement. Determination of setting times and soundness (+A1:2008). British Standard Institute (BSI), London, United Kingdom.
IS: 4031 (Part4)-1988. (1997). Methods of Physical Tests for Hydraulic Cement-Part 4 Determination of Consistency of Standard Cement Paste. Bureau of Indian Standards, New Delhi, India.
Tariq, K. A., Sohaib, M., & Baig, M. A. (2021). Effect of partial replacement of cement with rice husk ash on concrete properties. Pollack Periodica, 16(3), 83–87. doi:10.1556/606.2021.00409.
Gupta, G., & Pal, P. (2020). A Study on Self Compacting Concrete using Portland Pozzolana Cement. International Journal of Concrete Technology, 6(2), 1–9.
Singh, M. K. G., & Venkatanarayanan, H. K. (2020). Performance of Self-Consolidating High-Strength Mortars Developed from Portland Pozzolana Cement for Precast Applications. Journal of Materials in Civil Engineering, 32(3), 04019375. doi:10.1061/(asce)mt.1943-5533.0003041.
Xavier, J. R. (2020). Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. Journal of Adhesion Science and Technology, 34(2), 115-134. doi:10.1080/01694243.2019.1661658.
Agbi, G. G., & Uguru, H. (2021). Assessing the impact of cassava starch on the structural properties of sandcete blocks produced from recycled paper. Saudi Journal of Engineering Technology, 6(5), 99-103. doi:10.36348/sjet.2021.v06i05.004.
Oni, D., Mwero, J., & Kabubo, C. (2020). The Effect of Cassava Starch on the Durability Characteristics of Concrete. The Open Civil Engineering Journal, 14(1), 289–301. doi:10.2174/1874149502014010289.
Marar, K., & Eren, Ö. (2011). Effect of cement content and water/cement ratio on fresh concrete properties without admixtures. International Journal of Physical Sciences, 6(24), 5752–5765. doi:10.5897/IJPS11.188.
DOI: 10.28991/CEJ-2022-08-12-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Marwa Gumma Omer Adam
This work is licensed under a Creative Commons Attribution 4.0 International License.