Analysing the Effect of Cassava Flour as a Mixture on the Physical, Mechanical, and Durability Properties of High-Strength Concrete

Marwa Gumma Omer Adam, David O. Koteng, Joseph Ng’ang’a Thuo, Mohammed Matallah

Abstract


The availability, cost, and environmental impact of chemical admixtures are reduced when natural substitute materials are incorporated into the concrete as an admixture. This paper outlines the findings of a study that looked at the physical characteristics of fresh and hardened concrete made with Portland pozzolanic cement CEM II/B-P blended with cassava flour up to 5% by weight of cement. A low water/binder ratio of 0.35 was used together with a carboxylate-based superplasticizing admixture to produce high strength. In fresh-state concrete, the initial and final setting times, soundness, and consistency were found to increase with increased cassava flour content, whereas the compacting factor and slump were observed to decrease. In the hardened state, compressive strengths were determined at 3, 7, 14, 28, 56, and 90 days, while split tensile and flexural strengths were investigated at 28 days. Similarly, dry density and porosity were also investigated at 28 days. Water absorption was also studied as a potential indicator of durability in hardened concrete. Scanning electron microscopy characterization of cassava flour revealed porous particles of irregular shape. On the other hand, X-ray diffraction imaging showed that the primary chemicals in cassava flour are silicon dioxide (50%), calcium oxide (17%), and aluminium oxide (7%). All of the mixes that incorporated cassava flour were stronger than the control mix, with the 3% cassava flour combination producing the best results.

 

Doi: 10.28991/CEJ-2022-08-12-015

Full Text: PDF


Keywords


Portland Pozzolanic Cement; Cassava Flour; Workability; Bulk Dry Density; Water Absorption.

References


Kalra, M., & Mehmood, G. (2018). A Review paper on the Effect of different types of coarse aggregate on Concrete. IOP Conference Series: Materials Science and Engineering, 431, 082001. doi:10.1088/1757-899x/431/8/082001.

Onikeku, O., Shitote, S. M., Mwero, J., & Adedeji, A. A. (2019). Evaluation of Characteristics of Concrete Mixed with Bamboo Leaf Ash. The Open Construction & Building Technology Journal, 13(1), 67–80. doi:10.2174/1874836801913010067.

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.

Mohammed, T. U., Bin Harun, M. Z., & Joy, J. A. (2022). Effect of sand-to-aggregate volume ratio on durability of concrete. Innovative Infrastructure Solutions, 7(5), 1-12. doi:10.1007/s41062-022-00915-8.

Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.

Schmidt, W., Olonade, K. A., Mbugua, R. N., Lenz, F. J., & Ngassam, I. T. (2019). Bio-based rheology modifiers for high performance concrete–possible modes of actions and case study for cassava starch in West Africa. In International Conference on Application of Superabsorbent Polymers & Other New Admixtures towards Smart Concrete, 158-166. doi:10.1007/978-3-030-33342-3_17.

Aïtcin, P. C. (2016). Supplementary cementitious materials and blended cements. Science and Technology of Concrete Admixtures, Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-08-100693-1.00004-7.

Guades, E. J. (2019). Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete. European Journal of Environmental and Civil Engineering, 23(6), 693–709. doi:10.1080/19648189.2017.1304276.

Kynclova, M., Fiala, C., & Hajek, P. (2011). High performance concrete as a sustainable material. International Journal of Sustainable Building Technology and Urban Development, 2(1), 63–68. doi:10.5390/SUSB.2011.2.1.063.

Reddy, M. V. S., Sasi, K., Ashalatha, K., & Madhuri, M. (2017). Groundnut Shell Ash as Partial Replacement of Cement in Concrete. Research Journal of Science and Technology, 9(3), 313. doi:10.5958/2349-2988.2017.00056.0.

Koteng, D. O., & Chen, C. T. (2015). Strength development of lime-pozzolana pastes with silica fume and fly ash. Construction and Building Materials, 84, 294–300. doi:10.1016/j.conbuildmat.2015.03.052.

Abdalla, T. A., Koteng, D. O., Shitote, S. M., & Matallah, M. (2022). Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results in Engineering, 16(September), 100666. doi:10.1016/j.rineng.2022.100666.

Herring, T. C., Nyomboi, T., & Thuo, J. N. (2022). Ductility and cracking behavior of reinforced coconut shell concrete beams incorporated with coconut shell ash. Results in Engineering, 14(March), 100401. doi:10.1016/j.rineng.2022.100401.

Gupta, C. K., Sachan, A. K., & Kumar, R. (2022). Utilization of sugarcane bagasse ash in mortar and concrete: A review. Materials Today: Proceedings, 65, 798–807. doi:10.1016/j.matpr.2022.03.304.

Saraswathy, V., Karthick, S., Lee, H. S., Kwon, S.-J., & Yang, H.-M. (2017). Comparative Study of Strength and Corrosion Resistant Properties of Plain and Blended Cement Concrete Types. Advances in Materials Science and Engineering, 2017, 1–14. doi:10.1155/2017/9454982.

Okumu, V. A. (2018). Suitability of the Kenyan Blended Portland Cements for Structural Concrete Production. Journal of Sustainable Research in Engineering, 4(2), 55-68.

Ahmed, A. (2019). Chemical Reactions in Pozzolanic Concrete. Modern Approaches on Material Science, 1(4), 128–133,. doi:10.32474/mams.2019.01.000120.

Hilal, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications, 3–24, IntechOpen, London, United Kingdom. doi:10.5772/64574.

Chu, S. H. (2019). Effect of paste volume on fresh and hardened properties of concrete. Construction and Building Materials, 218, 284–294. doi:10.1016/j.conbuildmat.2019.05.131.

Akindahunsi, A. A. (2019). Investigation into the use of extracted starch from cassava and maize as admixture on the creep of concrete. Construction and Building Materials, 214, 659–667. doi:10.1016/j.conbuildmat.2019.04.110.

Gupta, S., & Kua, H. W. (2019). Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Science of the Total Environment, 662, 952-962. doi:10.1016/j.scitotenv.2019.01.269.

Khayat, K. H., & Mikanovic, N. (2012). Viscosity-enhancing admixtures and the rheology of concrete. Understanding the Rheology of Concrete, 209–228. Woodhead Publishing, Sawston, United Kingdom doi:10.1533/9780857095282.2.209.

Ortiz-Álvarez, N., Lizarazo-Marriaga, J., Brandão, P. F. B., Santos-Panqueva, Y., & Carrillo, J. (2021). Rheological properties of cement-based materials using a biopolymer viscosity modifying admixture (BVMA) under different dispersion conditions. Cement and Concrete Composites, 124, 104224. doi:10.1016/j.cemconcomp.2021.104224.

Kannur, B., & Chore, H. S. (2021). Utilization of sugarcane bagasse ash as cement-replacing materials for concrete pavement: An overview. Innovative Infrastructure Solutions, 6(4), 1-17. doi:10.1007/s41062-021-00539-4.

Oluwabusayo Oni, D., Mwero, J., & Kabubo, C. (2020). Experimental Investigation of the Physical and Mechanical Properties of Cassava Starch Modified Concrete. The Open Construction and Building Technology Journal, 13(1), 331–343. doi:10.2174/1874836801913010331.

Faqe, H., Dabaghh, H., & Mohammed, A. (2020). Natural Admixture as an Alternative for Chemical Admixture in Concrete Technology: A Review. The Journal of the University of Duhok, 32(2), 301–308. doi:10.26682/csjuod.2020.23.2.24.

Abd, S. M., Hamood, Q. Y., & Khamees. (2016). Effect of Using Corn Starch As Concrete Admixture. International Journal of Engineering Research and Science & Technology, 5(3).

Adeleke, B. K., GARBA, M., Alfa, N. M., & Dahiru, D. D. (2020). Effect of Sorghum Flour on the Properties of Concrete Journal of Environmental Technology, 2(1), 125-129.

Mbugua, R., Salim, R., & Ndambuki, J. (2016). Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar. Case Studies in Construction Materials, 5, 100–111. doi:10.1016/j.cscm.2016.09.002.

Uchechukwu Elinwa, A. (2017). Effects of Gum Arabic Admixture on the Mechanical Strengths of Cement Paste and Concrete. Advancements in Materials, 1(1), 25. doi:10.31058/j.am.2017.11003.

Anandaraj, S., Karthik, S., Vijaymohan, S., Rampradheep, G. S., Indhiradevi, P., & Anusha, G. (2022). Effects of using white flour, zinc oxide and zinc ash as an admixture in mortar and concrete. Materials Today: Proceedings, 52, 1788–1793. doi:10.1016/j.matpr.2021.11.447.

Kuznetsov, E., Pustovgar, A., Ivanova, I., Medvedev, V., & Elenova, A. (2018). Use of Silverbond quartz flour in the design of self-compacting concrete mixtures. IOP Conference Series: Materials Science and Engineering, 365(3). doi:10.1088/1757-899X/365/3/032070.

Alhozaimy, A., Fares, G., Alawad, O. A., & Al-Negheimish, A. (2015). Heat of hydration of concrete containing powdered scoria rock as a natural pozzolanic material. Construction and Building Materials, 81, 113–119. doi:10.1016/j.conbuildmat.2015.02.011.

Kone, B., Mwero, J. N., & Ronoh, E. K. (2022). Experimental Effect of Cassava Starch and Rice Husk Ash on Physical and Mechanical Properties of Concrete. International Journal of Engineering Trends and Technology, 70(2), 343–350. doi:10.14445/22315381/IJETT-V70I2P239.

Akpokodje, O. I., Agbi, G. G., & Uguru, H. (2020). Evaluation of Cassava Effluent as Organic Admixture in Concrete Production for Farm Structures. Turkish Journal of Agricultural Engineering Research, 271–282. doi:10.46592/turkager.2020.v01i02.005.

Okafor, F. O. (2010). The Performance of Cassava Flour As a Water-Reducing Admixture for Concrete. Nigerian Journal of Technology, 29(2), 106–112.

FAO. (2015). Food Outlook-Biannual report on Global Food markets Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: https://www.fao.org/fileadmin/user_upload/newsroom/docs/Food%20Outlook%20 October%202015.pdf (accessed on August 2022).

Surtono, A., Aprilliana, P., Supriyanto, A., Pauzi, G. A., Junaidi, Suciyati, S. W., & Warsito. (2019). Measuring of Cassava Starch Content by Using Strain Gauge. Journal of Physics: Conference Series, 1338(1). doi:10.1088/1742-6596/1338/1/012019.

Akindahunsi, A. A., & Uzoegbo, H. C. (2015). Strength and Durability Properties of Concrete with Starch Admixture. International Journal of Concrete Structures and Materials, 9(3), 323–335. doi:10.1007/s40069-015-0103-x.

Akindahunsi, A. A., & Schmidt, W. (2017). Effect of cassava starch on shrinkage characteristics of concrete. African Journal of Science, Technology, Innovation and Development, 11(4), 441–447. doi:10.1080/20421338.2017.1380580.

Ikoko, O. (2021). Evaluating the Compressive Strength of Wood Shavings-Cassava Starch-Sodium Chloride Hybridized Concrete. Saudi Journal of Engineering Technology, 6(11), 408-413. doi:10.36348/sjet.2021.v06i11.005.

Sybis, M., & Konował, E. (2022). Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites. Materials, 15(21), 7604. doi:10.3390/ma15217604.

Souza, J. M. de, Ramos Filho, R. E. B., Duarte, J. B., Silva, V. M. da, Rêgo, S. R. do, Lucena, L. de F. L., & Acchar, W. (2021). Mechanical and durability properties of compressed stabilized earth brick produced with cassava wastewater. Journal of Building Engineering, 44(May). doi:10.1016/j.jobe.2021.103290.

Adedokun, S. I., Adebisi, A. N., Omileye, A. A., Afolayiwola, T. A., & Ayinde, R. B. The Aftermath of Cassava Effluent in the Behaviour of Concrete. Journal of Advanced Cement & Concrete Technology, 4(3), 1-10. doi:10.5281/zenodo.5781930.

Akpokodje, O. I., & Uguru, H. (2019). Effect of fermented cassava waste water as admixture on some physic-mechanical properties of solid sandcrete blocks. International Journal of Engineering Trends and Technology (IJETT), 67(10), 216-222.

Schmidt, W., Tchetgnia Ngassam, I. L., Olonade, K. A., Mbugua, R., & Kühne, H. C. (2018). Plant based chemical admixtures – potentials and effects on the performance of cementitious materials. RILEM Technical Letters, 3(2018), 124–128. doi:10.21809/rilemtechlett.2018.83.

Sinkhonde, D., Rimbarngaye, A., Kone, B., & Herring, T. C. (2022). Representativity of morphological measurements and 2-d shape descriptors on mineral admixtures. Results in Engineering, 13(February), 100368. doi:10.1016/j.rineng.2022.100368.

ASTM C33/C33M – 18. (2018). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

ASTM D75/D75-19. (2019). Standard Method of Test for Sampling of Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/D0075_D0075M-19.

ASTM C128-01. (2017). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-01.

ASTM C29/C29M-09. (2016). Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0029_C0029M-09.

ACI 211.4R-08. (2008). Guide for Selecting Proportions for High-strength Concrete Using Portland Cement and Other Cementitious Materials. American Concrete Institute, Michigan, United States.

BS EN 206:2013. (2013). Concrete - Specification, performance, production and conformity. British Standard Institute (BSI), London, United Kingdom.

BS EN 196-3. (2005). Methods of testing cement. Determination of setting times and soundness (+A1:2008). British Standard Institute (BSI), London, United Kingdom.

IS: 4031 (Part4)-1988. (1997). Methods of Physical Tests for Hydraulic Cement-Part 4 Determination of Consistency of Standard Cement Paste. Bureau of Indian Standards, New Delhi, India.

Tariq, K. A., Sohaib, M., & Baig, M. A. (2021). Effect of partial replacement of cement with rice husk ash on concrete properties. Pollack Periodica, 16(3), 83–87. doi:10.1556/606.2021.00409.

Gupta, G., & Pal, P. (2020). A Study on Self Compacting Concrete using Portland Pozzolana Cement. International Journal of Concrete Technology, 6(2), 1–9.

Singh, M. K. G., & Venkatanarayanan, H. K. (2020). Performance of Self-Consolidating High-Strength Mortars Developed from Portland Pozzolana Cement for Precast Applications. Journal of Materials in Civil Engineering, 32(3), 04019375. doi:10.1061/(asce)mt.1943-5533.0003041.

Xavier, J. R. (2020). Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. Journal of Adhesion Science and Technology, 34(2), 115-134. doi:10.1080/01694243.2019.1661658.

Agbi, G. G., & Uguru, H. (2021). Assessing the impact of cassava starch on the structural properties of sandcete blocks produced from recycled paper. Saudi Journal of Engineering Technology, 6(5), 99-103. doi:10.36348/sjet.2021.v06i05.004.

Oni, D., Mwero, J., & Kabubo, C. (2020). The Effect of Cassava Starch on the Durability Characteristics of Concrete. The Open Civil Engineering Journal, 14(1), 289–301. doi:10.2174/1874149502014010289.

Marar, K., & Eren, Ö. (2011). Effect of cement content and water/cement ratio on fresh concrete properties without admixtures. International Journal of Physical Sciences, 6(24), 5752–5765. doi:10.5897/IJPS11.188.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Marwa Gumma Omer Adam

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message