The Effect of Shear Span on the Behavior of Triangularly Corrugated Web Steel Girders
Vol. 9 No. 2 (2023): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2023-09-02-09
Full Text: PDF
Abdullah, M. D., & Almayah, A. A. (2023). The Effect of Shear Span on the Behavior of Triangularly Corrugated Web Steel Girders. Civil Engineering Journal, 9(2), 372–380. https://doi.org/10.28991/CEJ-2023-09-02-09
[1] ANSI/AISC 360-16. (2016). Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago, United States.
[2] Roger Brockenbrough, P. E., & Merritt, F. S. (2011). Structural steel designer's handbook. McGraw-Hill Education, New York, United States.
[3] Johnson, R. P., & Cafolla, J. (1997). Corrugated webs in plate girders for bridges. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 122(2), 157–164. doi:10.1680/istbu.1997.29305.
[4] Sayed-Ahmed, E. Y. (1998, December). Corrugated Steel web plate/box girders: Bridges of the 21st century. 8th International Colloquium on Structural and Geotechnical Engineering, 15-17 December, 1998, Cairo, Egypt.
[5] Elgaaly, M., Hamilton, R. W., & Seshadri, A. (1996). Shear strength of beams with corrugated webs. Journal of Structural Engineering, 122(4), 390-398. doi:10.1061/(ASCE)0733-9445(1996)122:4(390).
[6] Elgaaly, M., Seshadri, A., & Hamilton, R. W. (1997). Bending Strength of Steel Beams with Corrugated Webs. Journal of Structural Engineering, 123(6), 772–782. doi:10.1061/(asce)0733-9445(1997)123:6(772).
[7] Sayed-Ahmed, E. Y. (2005). Innovative steel plate girders with corrugated webs for short span bridges. Proceedings of the 4th International Conference on Current and Future Trends in Bridge Design, construction and Maintenance, 10-11 October, 2005, Kuala Lumpur, Malaysia.
[8] Sayed-Ahmed, E. Y. (2007). Design aspects of steel I-girders with corrugated steel webs. Electronic Journal of Structural Engineering, 7, 27–40. doi:10.56748/ejse.772.
[9] Khalid, Y. A., Chan, C. L., Sahari, B. B., & Hamouda, A. M. S. (2004). Bending behaviour of corrugated web beams. Journal of Materials Processing Technology, 150(3), 242–254. doi:10.1016/j.jmatprotec.2004.02.042.
[10] Wimer, M. R. (2004). Concrete filled rectangular tubular flange girders with corrugated and flat webs. PhD Thesis, Lehigh University, Bethlehem, United States.
[11] Javed, M. F., Sulong, N. H. R., Memon, S. A., Rehman, S. K. U., & Khan, N. B. (2018). Experimental and numerical study of flexural behavior of novel oil palm concrete filled steel tube exposed to elevated temperature. Journal of Cleaner Production, 205, 95-114. doi:10.1016/j.jclepro.2018.09.032.
[12] Gil, H., Lee, S., Lee, J., & Lee, H. (2005). Shear Buckling Strength of Trapezoidally Corrugated Steel Webs for Bridges. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, 11s, 473–480. doi:10.3141/trr.11s.5u2h106065984433.
[13] Bhetuwal, U., Shrestha, J. K., & Pradhananga, R. (2022). Fatigue life analysis of steel–concrete composite bridge considering road surface conditions. Innovative Infrastructure Solutions, 7(1), 124. doi:10.1007/s41062-021-00730-7.
[14] Sadeek, A. B., Tohamy, S., Mohamed, O., & Ibrahim, A. (2015). Behavior of plate girder with corrugated steel web subjected to shear loading. International Conference on Advances in Structural and Geotechnical Engineering (ICASGE 2015), 6-9 April, 2015, Hurghada, Egypt.
[15] Zevallos, E., Hassanein, M. F., Real, E., & Mirambell, E. (2016). Shear evaluation of tapered bridge girder panels with steel corrugated webs near the supports of continuous bridges. Engineering Structures, 113, 149-159. doi:10.1016/j.engstruct.2016.01.030.
[16] Zevallos Barrios, E. J. (2015). Shear resistance of different web panels of linearly tapered bridge girders with steel corrugated webs. Master's thesis, Universitat Politècnica de Catalunya, Catalonia, Spain.
[17] Abambres, M., & He, J. (2019). Neural Network-Based Analytical Model to Predict the Shear Strength of Steel Girders with a Trapezoidal Corrugated Web. SSRN Electronic Journal, 11(3). doi:10.2139/ssrn.3368669.
[18] Leblouba, M., Tabsh, S. W., & Barakat, S. (2020). Reliability-based design of corrugated web steel girders in shear as per AASHTO LRFD. Journal of Constructional Steel Research, 169. doi:10.1016/j.jcsr.2020.106013.
[19] Elamary, A. S., & Taha, I. B. M. (2021). Determining the shear capacity of steel beams with corrugated webs by using optimised regression learner techniques. Materials, 14(9), 2364. doi:10.3390/ma14092364.
[20] Machimdamrong, C., Watanabe, E., & Utsunomiya, T. (2004). Analysis of corrugated steel web girders by an efficient beam bending theory. Structural Engineering/Earthquake Engineering, 21(2). doi:10.2208/jsceseee.21.131s.
[21] Jiang, R. J., Kwong Au, F. T., & Xiao, Y. F. (2015). Prestressed Concrete Girder Bridges with Corrugated Steel Webs: Review. Journal of Structural Engineering, 141(2). doi:10.1061/(asce)st.1943-541x.0001040.
[22] He, J., Liu, Y., Lin, Z., Chen, A., & Yoda, T. (2012). Shear behavior of partially encased composite I-girder with corrugated steel web: Numerical study. Journal of Constructional Steel Research, 79, 166–182. doi:10.1016/j.jcsr.2012.07.018.
[23] Kadhim, A. W., & Ammash, H. K. (2021). Experimental study of encased composite corrugated steel webs under shear loading. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012062.
[24] Zhang, B., Chen, W., & Xu, J. (2018). Mechanical Behavior of Prefabricated Composite Box Girders with Corrugated Steel Webs under Static Loads. Journal of Bridge Engineering, 23(10). doi:10.1061/(asce)be.1943-5592.0001290.
[25] Zhang, Y., Jiang, L., Zhou, W., & Feng, Y. (2020). Shear lag effect and accordion effect on dynamic characteristics of composite box girder bridge with corrugated steel webs. Applied Sciences (Switzerland), 10(12), 4346. doi:10.3390/app10124346.
[26] Cao, Q., Jiang, H., & Wang, H. (2015). Shear behavior of corrugated steel webs in H shape bridge girders. In Mathematical Problems in Engineering (Vol. 2015). doi:10.1155/2015/796786.
[27] Erdal, F., Tunca, O., & Doğan, E. (2017). Optimum Design of Composite Corrugated Web Beams Using Hunting Search Algorithm. International Journal of Engineering & Applied Sciences, 9(2), 156–156. doi:10.24107/ijeas.323633.
[28] Elamary, A. S., Alharthi, Y., Abdalla, O., Alqurashi, M., & Sharaky, I. A. (2021). Failure mechanism of hybrid steel beams with trapezoidal corrugated-web non-welded inclined folds. Materials, 14(6), 1424. doi:10.3390/ma14061424.
[29] Górecki, M., & Ššledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of i-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.
[30] Sharaky, I. A., Alharthi, Y. M., & Elamary, A. S. (2022). Effect of Shear and Pure Bending Spans on the Behaviour of Steel Beams with Corrugated Webs. Materials, 15(13), 4675. doi:10.3390/ma15134675.
[31] Abdullah, M. D., Muhaisin, M. H., & Ammash, H. K. (2022). Effect of Shear Span-To-Depth Ratio on Behavior of Sandwich Core Steel Girder With Corrugated Web. Scientific Review Engineering and Environmental Sciences, 31(2), 79–87. doi:10.22630/srees.2221.
[32] Abdullah, M. D., & Muhaisin, M. H. (2022). Experimental Behavior of Built-Up Steel Girder with Core Web Having Trapezoidal Corrugated Panel. International Journal of GEOMATE, 23(97), 180–187. doi:10.21660/2022.97.3436.
[33] Sayed, A. M., Elaraki, Y. G., & Elalaoui, O. (2022). Experimental and Numerical Analysis of Steel Beams' Efficiency with Different Shapes of Corrugated Webs under Free Vibrations. Metals, 12(6), 938. doi:10.3390/met12060938.
[34] Prathebha, P., & Jane, H. H. (2018). Corrugated web steel girders-A state of the art review. International Journal of Engineering Research and Development 14(9), 14-19.
[35] Ghanim, G., Baldawi, W., & Ali, A. (2021). A Review of Composite Steel Plate Girders with Corrugated Webs. Engineering and Technology Journal, 39(12), 1927–1938. doi:10.30684/etj.v39i12.2193.
[36] ASTM A36/A36M-01. (2017). Standard Specification for Carbon Structural Steel. ASTM International, Pennsylvania, United States. doi:10.1520/A0036_A0036m-01.
[2] Roger Brockenbrough, P. E., & Merritt, F. S. (2011). Structural steel designer's handbook. McGraw-Hill Education, New York, United States.
[3] Johnson, R. P., & Cafolla, J. (1997). Corrugated webs in plate girders for bridges. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 122(2), 157–164. doi:10.1680/istbu.1997.29305.
[4] Sayed-Ahmed, E. Y. (1998, December). Corrugated Steel web plate/box girders: Bridges of the 21st century. 8th International Colloquium on Structural and Geotechnical Engineering, 15-17 December, 1998, Cairo, Egypt.
[5] Elgaaly, M., Hamilton, R. W., & Seshadri, A. (1996). Shear strength of beams with corrugated webs. Journal of Structural Engineering, 122(4), 390-398. doi:10.1061/(ASCE)0733-9445(1996)122:4(390).
[6] Elgaaly, M., Seshadri, A., & Hamilton, R. W. (1997). Bending Strength of Steel Beams with Corrugated Webs. Journal of Structural Engineering, 123(6), 772–782. doi:10.1061/(asce)0733-9445(1997)123:6(772).
[7] Sayed-Ahmed, E. Y. (2005). Innovative steel plate girders with corrugated webs for short span bridges. Proceedings of the 4th International Conference on Current and Future Trends in Bridge Design, construction and Maintenance, 10-11 October, 2005, Kuala Lumpur, Malaysia.
[8] Sayed-Ahmed, E. Y. (2007). Design aspects of steel I-girders with corrugated steel webs. Electronic Journal of Structural Engineering, 7, 27–40. doi:10.56748/ejse.772.
[9] Khalid, Y. A., Chan, C. L., Sahari, B. B., & Hamouda, A. M. S. (2004). Bending behaviour of corrugated web beams. Journal of Materials Processing Technology, 150(3), 242–254. doi:10.1016/j.jmatprotec.2004.02.042.
[10] Wimer, M. R. (2004). Concrete filled rectangular tubular flange girders with corrugated and flat webs. PhD Thesis, Lehigh University, Bethlehem, United States.
[11] Javed, M. F., Sulong, N. H. R., Memon, S. A., Rehman, S. K. U., & Khan, N. B. (2018). Experimental and numerical study of flexural behavior of novel oil palm concrete filled steel tube exposed to elevated temperature. Journal of Cleaner Production, 205, 95-114. doi:10.1016/j.jclepro.2018.09.032.
[12] Gil, H., Lee, S., Lee, J., & Lee, H. (2005). Shear Buckling Strength of Trapezoidally Corrugated Steel Webs for Bridges. Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, 11s, 473–480. doi:10.3141/trr.11s.5u2h106065984433.
[13] Bhetuwal, U., Shrestha, J. K., & Pradhananga, R. (2022). Fatigue life analysis of steel–concrete composite bridge considering road surface conditions. Innovative Infrastructure Solutions, 7(1), 124. doi:10.1007/s41062-021-00730-7.
[14] Sadeek, A. B., Tohamy, S., Mohamed, O., & Ibrahim, A. (2015). Behavior of plate girder with corrugated steel web subjected to shear loading. International Conference on Advances in Structural and Geotechnical Engineering (ICASGE 2015), 6-9 April, 2015, Hurghada, Egypt.
[15] Zevallos, E., Hassanein, M. F., Real, E., & Mirambell, E. (2016). Shear evaluation of tapered bridge girder panels with steel corrugated webs near the supports of continuous bridges. Engineering Structures, 113, 149-159. doi:10.1016/j.engstruct.2016.01.030.
[16] Zevallos Barrios, E. J. (2015). Shear resistance of different web panels of linearly tapered bridge girders with steel corrugated webs. Master's thesis, Universitat Politècnica de Catalunya, Catalonia, Spain.
[17] Abambres, M., & He, J. (2019). Neural Network-Based Analytical Model to Predict the Shear Strength of Steel Girders with a Trapezoidal Corrugated Web. SSRN Electronic Journal, 11(3). doi:10.2139/ssrn.3368669.
[18] Leblouba, M., Tabsh, S. W., & Barakat, S. (2020). Reliability-based design of corrugated web steel girders in shear as per AASHTO LRFD. Journal of Constructional Steel Research, 169. doi:10.1016/j.jcsr.2020.106013.
[19] Elamary, A. S., & Taha, I. B. M. (2021). Determining the shear capacity of steel beams with corrugated webs by using optimised regression learner techniques. Materials, 14(9), 2364. doi:10.3390/ma14092364.
[20] Machimdamrong, C., Watanabe, E., & Utsunomiya, T. (2004). Analysis of corrugated steel web girders by an efficient beam bending theory. Structural Engineering/Earthquake Engineering, 21(2). doi:10.2208/jsceseee.21.131s.
[21] Jiang, R. J., Kwong Au, F. T., & Xiao, Y. F. (2015). Prestressed Concrete Girder Bridges with Corrugated Steel Webs: Review. Journal of Structural Engineering, 141(2). doi:10.1061/(asce)st.1943-541x.0001040.
[22] He, J., Liu, Y., Lin, Z., Chen, A., & Yoda, T. (2012). Shear behavior of partially encased composite I-girder with corrugated steel web: Numerical study. Journal of Constructional Steel Research, 79, 166–182. doi:10.1016/j.jcsr.2012.07.018.
[23] Kadhim, A. W., & Ammash, H. K. (2021). Experimental study of encased composite corrugated steel webs under shear loading. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012062.
[24] Zhang, B., Chen, W., & Xu, J. (2018). Mechanical Behavior of Prefabricated Composite Box Girders with Corrugated Steel Webs under Static Loads. Journal of Bridge Engineering, 23(10). doi:10.1061/(asce)be.1943-5592.0001290.
[25] Zhang, Y., Jiang, L., Zhou, W., & Feng, Y. (2020). Shear lag effect and accordion effect on dynamic characteristics of composite box girder bridge with corrugated steel webs. Applied Sciences (Switzerland), 10(12), 4346. doi:10.3390/app10124346.
[26] Cao, Q., Jiang, H., & Wang, H. (2015). Shear behavior of corrugated steel webs in H shape bridge girders. In Mathematical Problems in Engineering (Vol. 2015). doi:10.1155/2015/796786.
[27] Erdal, F., Tunca, O., & Doğan, E. (2017). Optimum Design of Composite Corrugated Web Beams Using Hunting Search Algorithm. International Journal of Engineering & Applied Sciences, 9(2), 156–156. doi:10.24107/ijeas.323633.
[28] Elamary, A. S., Alharthi, Y., Abdalla, O., Alqurashi, M., & Sharaky, I. A. (2021). Failure mechanism of hybrid steel beams with trapezoidal corrugated-web non-welded inclined folds. Materials, 14(6), 1424. doi:10.3390/ma14061424.
[29] Górecki, M., & Ššledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of i-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.
[30] Sharaky, I. A., Alharthi, Y. M., & Elamary, A. S. (2022). Effect of Shear and Pure Bending Spans on the Behaviour of Steel Beams with Corrugated Webs. Materials, 15(13), 4675. doi:10.3390/ma15134675.
[31] Abdullah, M. D., Muhaisin, M. H., & Ammash, H. K. (2022). Effect of Shear Span-To-Depth Ratio on Behavior of Sandwich Core Steel Girder With Corrugated Web. Scientific Review Engineering and Environmental Sciences, 31(2), 79–87. doi:10.22630/srees.2221.
[32] Abdullah, M. D., & Muhaisin, M. H. (2022). Experimental Behavior of Built-Up Steel Girder with Core Web Having Trapezoidal Corrugated Panel. International Journal of GEOMATE, 23(97), 180–187. doi:10.21660/2022.97.3436.
[33] Sayed, A. M., Elaraki, Y. G., & Elalaoui, O. (2022). Experimental and Numerical Analysis of Steel Beams' Efficiency with Different Shapes of Corrugated Webs under Free Vibrations. Metals, 12(6), 938. doi:10.3390/met12060938.
[34] Prathebha, P., & Jane, H. H. (2018). Corrugated web steel girders-A state of the art review. International Journal of Engineering Research and Development 14(9), 14-19.
[35] Ghanim, G., Baldawi, W., & Ali, A. (2021). A Review of Composite Steel Plate Girders with Corrugated Webs. Engineering and Technology Journal, 39(12), 1927–1938. doi:10.30684/etj.v39i12.2193.
[36] ASTM A36/A36M-01. (2017). Standard Specification for Carbon Structural Steel. ASTM International, Pennsylvania, United States. doi:10.1520/A0036_A0036m-01.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
