Monitoring and Modelling Morphological Changes in Rivers Using RS and GIS Techniques
Downloads
Doi: 10.28991/CEJ-2023-09-03-03
Full Text: PDF
[2] Abidin, R. Z., Sulaiman, M. S., & Yusoff, N. (2017). Erosion risk assessment: A case study of the Langat River bank in Malaysia. International Soil and Water Conservation Research, 5(1), 26–35. doi:10.1016/j.iswcr.2017.01.002.
[3] Laha, C. (2015). Changing course of the river Ganga in Malda district West Bengal-Damage assessment and risk zone management. PhD Thesis, University of Calcutta, Kolkata, India.
[4] Alam, J. B., Uddin, M., Ahmed, J. U., Cacovean, H., Rahman, H. M., Banik, B. K., & Yesmin, N. (2007). Study of morphological change of river old Brahmaputra and its social impacts by remote sensing. Geographia Technica, 2, 1-11.
[5] Mazumder, S. K. (2004). River behaviour upstream and downstream of hydraulic structures. International Conference on Hydraulic Engineering: Research and Practice (ICONHERP-2004), 26-28 October, 2004, Roorkee, India.
[6] Al-Ansari, N., Adamo, N., Sissakian, V. K., Knutsson, S., & Laue, J. (2018). Water Resources of the Tigris River Catchment. Journal of Earth Sciences and Geotechnical Engineering, 8(3), 1792–9660.
[7] Abed, K. R., Hobi, M. H., & Jihad, A. J. (2014). Numerical modeling of sediment transport upstream of Al-Ghammas barrage. International Journal of Scientific & Engineering Research, 5(11), 469-477.
[8] Hobi, H. M. (2013). Predication of Sediment Transport in Al- Abbasyia Barrage Using the Inverse Monitoring. Kufa Journal of Engineering, 5(1).
[9] Hobi, M. H. (2014). Analytical Study of Haditha Reservoir Sedimentation by CFD Model. Journal of Babylon University / Engineering Sciences, 22(2), 2014.
[10] Mahmood, M. S., Almurshedi, K. R., & Hashim, Z. N. (2017). Non-linear regression models for hydraulic geometry relationships in Al-Abbasia meandering reach in Euphrates River. Jordan Journal of Civil Engineering, 11(4), 549–556.
[11] Hobi, M. H., Khassaf, S. I., & Al-Kizwini, M. M. (2011). Three-Dimensional Flow Model for the Downstream of Kuffa Barrage. Engineering, 29(3), 434–441.
[12] Mohammed, H. S., Alturfi, U. A. M., & Shlash, M. A. (2018). Sediment transport capacity in Euphrates River at al-Abbasia reach using HEC-RAS model. International Journal of Civil Engineering and Technology, 9(5), 919–929.
[13] Nama, A. H., Abbas, A. S., & Maatooq, J. S. (2022). Field and Satellite Images-Based Investigation of Rivers Morphological Aspects. Civil Engineering Journal (Iran), 8(7), 1339–1357. doi:10.28991/CEJ-2022-08-07-03.
[14] Elnashar, A., Zeng, H., Wu, B., Fenta, A. A., Nabil, M., & Duerler, R. (2021). Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Science of the Total Environment, 793, 148466. doi:10.1016/j.scitotenv.2021.148466.
[15] Ibitoye, M. O. (2021). A remote sensing-based evaluation of channel morphological characteristics of part of lower river Niger, Nigeria. SN Applied Sciences, 3(3). doi:10.1007/s42452-021-04215-1.
[16] Boota, M. W., Yan, C., Idrees, M. B., Li, Z., Soomro, S. E. H., Dou, M., Zohaib, M., & Yousaf, A. (2021). Assessment of the morphological trends and sediment dynamics in the Indus River, Pakistan. Journal of Water and Climate Change, 12(7), 3082–3098. doi:10.2166/wcc.2021.125.
[17] Boothroyd, R. J., Nones, M., & Guerrero, M. (2021). Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Frontiers in Environmental Science, 9(657354). doi:10.3389/fenvs.2021.657354.
[18] Pareta, K. (2020). Effect of Laxmanpur Barrage on the River System-A Case Study through Multi-Temporal Satellite Remote Sensing Data. Indian Journal of Engineering, 17(48), 443-449.
[19] Bato, V. A., Paningbatan, E. P., & Bartolome, B. J. (2011). High resolution satellite data for comprehensive land-use planning. Journal of Environmental Science and Management, 14(1), 12–23.
[20] Seker, D. Z., Goksel, C., Kabdasli, S., Musaoglu, N., & Kaya, S. (2003). Investigation of coastal morphological changes due to river basin characteristics by means of remote sensing and GIS techniques. Water Science and Technology, 48(10), 135–142. doi:10.2166/wst.2003.0558.
[21] Abd El-Kawy, O. R., Rí¸d, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483–494. doi:10.1016/j.apgeog.2010.10.012.
[22] Masria, A., Nadaoka, K., Negm, A., & Iskander, M. (2015). Detection of shoreline and land cover changes around Rosetta Promontory, Egypt, based on remote sensing analysis. Land, 4(1), 216–230. doi:10.3390/land4010216.
[23] USGS. (2023) Science for a Changing World. U. S. Department of Interior, Washington, United States. Available online: https://earthexplorer.usgs.gov/ (accessed on January 2023).
[24] Gurnell, A. M., Morrissey, I. P., Boitsidis, A. J., Bark, T., Clifford, N. J., Petts, G. E., & Thompson, K. (2006). Initial adjustments within a new river channel: Interactions between fluvial processes, colonizing vegetation, and bank profile development. Environmental Management, 38(4), 580–596. doi:10.1007/s00267-005-0190-6.
[25] Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E., & Hession, W. C. (2005). The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Bulletin of the Geological Society of America, 117(1–2), 229–243. doi:10.1130/B25447.1.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
