Contribution to Railway Track Maintenance Planning from the Analysis of Dynamic Movements of Trains
Abstract
Doi: 10.28991/CEJ-2023-09-02-02
Full Text: PDF
Keywords
References
Soleimanmeigouni, I., Ahmadi, A., & Kumar, U. (2018). Track geometry degradation and maintenance modelling: A review. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(1), 73–102. doi:10.1177/0954409716657849.
Koohmishi, M. (2019). Drainage potential of degraded railway ballast considering initial gradation and intrusion of external fine materials. Soils and Foundations, 59(6), 2265–2278. doi:10.1016/j.sandf.2019.12.011.
Kaewunruen, S., Ngamkhanong, C., & Lim, C. H. (2018). Damage and failure modes of railway prestressed concrete sleepers with holes/web openings subject to impact loading conditions. Engineering Structures, 176, 840–848. doi:10.1016/j.engstruct.2018.09.057.
Koohmishi, M., & Palassi, M. (2020). Degradation of railway ballast under impact loading considering the morphological properties of aggregate. Transportation Geotechnics, 25. doi:10.1016/j.trgeo.2020.100398.
Pang, Y., Lingamanaik, S. N., Chen, B. K., & Yu, S. F. (2020). Measurement of deformation of the concrete sleepers under different support conditions using non-contact laser speckle imaging sensor. Engineering Structures, 205. doi:10.1016/j.engstruct.2019.110054.
Hu, Y., Zhou, L., Ding, H. H., Tan, G. X., Lewis, R., Liu, Q. Y., Guo, J., & Wang, W. J. (2020). Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribology International, 143, 106091. doi:10.1016/j.triboint.2019.106091.
Kang, C., Schneider, S., Wenner, M., & Marx, S. (2020). Experimental investigation on rail fatigue resistance of track/bridge interaction. Engineering Structures, 216, 110747. doi:10.1016/j.engstruct.2020.110747.
Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. doi:10.1111/mice.12453.
Ribeiro, F. B., Do Nascimento, F. A. C., & da Silva, M. A. V. (2022). Environmental performance analysis of railway infrastructure using life cycle assessment: Selecting pavement projects based on global warming potential impacts. Journal of Cleaner Production, 365, 132558. doi:10.1016/j.jclepro.2022.132558.
Benedetto, A., Bianchini Ciampoli, L., Brancadoro, M. G., Alani, A. M., & Tosti, F. (2018). A Computer-Aided Model for the Simulation of Railway Ballast by Random Sequential Adsorption Process. Computer-Aided Civil and Infrastructure Engineering, 33(3), 243–257. doi:10.1111/mice.12342.
Sasidharan, M., Burrow, M. P. N., & Ghataora, G. S. (2020). A whole life cycle approach under uncertainty for economically justifiable ballasted railway track maintenance. Research in Transportation Economics, 80, 100815. doi:10.1016/j.retrec.2020.100815.
Burrow, M. P. N., Naito, S., & Evdorides, H. T. (2009). Network-level railway track maintenance management model. Transportation Research Record, 2117(2117), 66–76. doi:10.3141/2117-09.
Federal Railroad Administration. (2008). Track Safety Standards Compliance Manual. Office of Safety Assurance and Compliance, United States Department of Transportation, Washington, United States.
Roghani, A., & Hendry, M. T. (2017). Quantifying the impact of subgrade stiffness on track quality and the development of geometry defects. Journal of Transportation Engineering, 143(7), 4017029. doi:10.1061/JTEPBS.0000043.
Higgins, C., & Liu, X. (2018). Modeling of track geometry degradation and decisions on safety and maintenance: A literature review and possible future research directions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(5), 1385–1397. doi:10.1177/0954409717721870.
Le Pen, L., Milne, D., Watson, G., Harkness, J., & Powrie, W. (2020). A model for the stochastic prediction of track support stiffness. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234(5), 468–481. doi:10.1177/0954409719841800.
Van Der Westhuizen, N. J., & Grabe, P. J. (2013). The integration of railway asset management information to ensure maintenance effectiveness. Journal of the South African Institution of Civil Engineering, 55(3), 18-29.
Sharma, S., Cui, Y., He, Q., Mohammadi, R., & Li, Z. (2018). Data-driven optimization of railway maintenance for track geometry. Transportation Research Part C: Emerging Technologies, 90, 34–58. doi:10.1016/j.trc.2018.02.019.
Bakhtiary, A., Zakeri, J. A., & Mohammadzadeh, S. (2021). An opportunistic preventive maintenance policy for tamping scheduling of railway tracks. International Journal of Rail Transportation, 9(1), 1–22. doi:10.1080/23248378.2020.1737256.
EN 13848–5. (2008). Railway applications – track – track geometry quality – Part 5: Geometric quality levels. Brussels, Belgium: CEN (European Committee for Standardization).
Soleimanmeigouni, I., Ahmadi, A., Khajehei, H., & Nissen, A. (2020). Investigation of the effect of the inspection intervals on the track geometry condition. Structure and Infrastructure Engineering, 16(8), 1138–1146. doi:10.1080/15732479.2019.1687528.
Rahimikelarijani, B., Mohassel, A., & Hamidi, M. (2020). Railroad Track Geometric Degradation Analysis: A BNSF Case Study. Journal of Transportation Engineering, Part A: Systems, 146(2), 4019068. doi:10.1061/jtepbs.0000303.
Litherland, J., & Andrews, J. (2020). A petri net methodology for modelling the maintenance of railway route sections. Proceedings of the 29th European Safety and Reliability Conference (ESREL 2019), 22-26 September, 2019, Hanover, Germany.
Allah Bukhsh, Z., Saeed, A., Stipanovic, I., & Doree, A. G. (2019). Predictive maintenance using tree-based classification techniques: A case of railway switches. Transportation Research Part C: Emerging Technologies, 101, 35–54. doi:10.1016/j.trc.2019.02.001.
Su, Z., Jamshidi, A., Núñez, A., Baldi, S., & De Schutter, B. (2017). Multi-level condition-based maintenance planning for railway infrastructures – A scenario-based chance-constrained approach. Transportation Research Part C: Emerging Technologies, 84, 92–123. doi:10.1016/j.trc.2017.08.018.
Singh, R. P., Nimbalkar, S., Singh, S., & Choudhury, D. (2020). Field assessment of railway ballast degradation and mitigation using geotextile. Geotextiles and Geomembranes, 48(3), 275–283. doi:10.1016/j.geotexmem.2019.11.013.
Andrews, J., Prescott, D., & De Rozières, F. (2014). A stochastic model for railway track asset management. Reliability Engineering & System Safety, 130, 76–84. doi:10.1016/j.ress.2014.04.021.
Wen, M., Li, R., & Salling, K. B. (2016). Optimization of preventive condition-based tamping for railway tracks. European Journal of Operational Research, 252(2), 455–465. doi:10.1016/j.ejor.2016.01.024.
Lee, J. S., Choi, I. Y., Kim, I. K., & Hwang, S. H. (2018). Tamping and Renewal Optimization of Ballasted Track Using Track Measurement Data and Genetic Algorithm. Journal of Transportation Engineering, Part A: Systems, 144(3). doi:10.1061/jtepbs.0000120.
Khouzani, A. H. E., Golroo, A., & Bagheri, M. (2016). Railway maintenance management using a stochastic geometrical degradation model. Journal of Transportation Engineering, 143(1), 4016002. doi:10.1061/JTEPBS.0000002.
Khajehei, H., Ahmadi, A., Soleimanmeigouni, I., & Nissen, A. (2019). Allocation of effective maintenance limit for railway track geometry. Structure and Infrastructure Engineering, 15(12), 1597–1612. doi:10.1080/15732479.2019.1629464.
Nielsen, J. C. O., & Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, 441–456. doi:10.1016/j.jsv.2017.10.005.
Andrade, A. R., & Teixeira, P. F. (2015). Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models. Reliability Engineering and System Safety, 142, 169–183. doi:10.1016/j.ress.2015.05.009.
Su, Z., Jamshidi, A., Núñez, A., Baldi, S., & De Schutter, B. (2019). Integrated condition-based track maintenance planning and crew scheduling of railway networks. Transportation Research Part C: Emerging Technologies, 105, 359–384. doi:10.1016/j.trc.2019.05.045.
Sadeghi, J., Heydari, H., & Doloei, E. A. (2017). Improvement of railway maintenance approach by developing a new railway condition index. Journal of Transportation Engineering, 143(8), 4017037. doi:10.1061/JTEPBS.0000063.
Neuhold, J., Vidovic, I., & Marschnig, S. (2020). Preparing Track Geometry Data for Automated Maintenance Planning. Journal of Transportation Engineering, Part A: Systems, 146(5), 4020032. doi:10.1061/jtepbs.0000349.
Yang, Y., Liu, G., & Wang, X. (2021). Time–frequency characteristic analysis method for track geometry irregularities based on multivariate empirical mode decomposition and Hilbert spectral analysis. Vehicle System Dynamics, 59(5), 719–742. doi:10.1080/00423114.2019.1711137.
Morais, J., Santos, C., Morais, P., Paixão, A., Fortunato, E., Asseiceiro, F., Alvarenga, P., & Gomes, L. (2019). Continuous monitoring and evaluation of railway tracks: System description and assessment. Procedia Structural Integrity, 17, 448–455. doi:10.1016/j.prostr.2019.08.059.
Lima, J. B. de, Lopes, L. A. S., & Aragão Filho, L. A. C. M. de. (2021). Contribuição à manutenção da via permanente com acelerômetros em pacotes inerciais portáteis. Research, Society and Development, 10(6), e3910615369. doi:10.33448/rsd-v10i6.15369.
Guler, H., Jovanovic, S., & Evren, G. (2011). Modelling railway track geometry deterioration. Proceedings of the Institution of Civil Engineers: Transport, 164(2), 65–75. doi:10.1680/tran.2011.164.2.65.
Guler, H. (2016). Optimisation of railway track maintenance and renewal works by genetic algorithms. Gradjevinar, 68(12), 979–993. doi:10.14256/JCE.1458.2015.
Mohammadi, R., He, Q., Ghofrani, F., Pathak, A., & Aref, A. (2019). Exploring the impact of foot-by-foot track geometry on the occurrence of rail defects. Transportation Research Part C: Emerging Technologies, 102, 153–172. doi:10.1016/j.trc.2019.03.004.
Varandas, J. N., Paixão, A., Fortunato, E., Zuada Coelho, B., & Hölscher, P. (2020). Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation. Computers and Geotechnics, 126, 103712. doi:10.1016/j.compgeo.2020.103712.
Youqin Huang, J. (2021). Nadal’s Limit (L/V) to Wheel Climb and Two Derailment Modes. Engineering Physics, 5(1), 1-8. doi:10.11648/j.ep.20210501.12.
Barbosa, R. S. (2016). New method for railway track quality identification through the safety dynamic performance of instrumented railway vehicle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(8), 2265–2275. doi:10.1007/s40430-015-0471-9.
Gullers, P., Andersson, L., & Lundén, R. (2008). High-frequency vertical wheel-rail contact forces-Field measurements and influence of track irregularities. Wear, 265(9–10), 1472–1478. doi:10.1016/j.wear.2008.02.035.
Bocciolone, M., Caprioli, A., Cigada, A., & Collina, A. (2007). A measurement system for quick rail inspection and effective track maintenance strategy. Mechanical Systems and Signal Processing, 21(3), 1242–1254. doi:10.1016/j.ymssp.2006.02.007.
Lee, J. S., Choi, S., Kim, S. S., Kim, Y. G., Kim, S. W., & Park, C. (2011). Track condition monitoring by in-service trains: a comparison between axle-box and bogie accelerometers. 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011). doi:10.1049/cp.2011.0586.
Weston, P., Roberts, C., Yeo, G., & Stewart, E. (2015). Perspectives on railway track geometry condition monitoring from in-service railway vehicles. Vehicle System Dynamics, 53(7), 1063–1091. doi:10.1080/00423114.2015.1034730.
Lederman, G., Chen, S., Garrett, J., Kovačević, J., Noh, H. Y., & Bielak, J. (2017). Track-monitoring from the dynamic response of an operational train. Mechanical Systems and Signal Processing, 87, 1–16. doi:10.1016/j.ymssp.2016.06.041.
Jovanovic, S. (2005). Modern railway infrastructure asset management. Proceedings of the 24th Southern African Transport Conference, 11-13 July, 2005, Pretoria, South Africa.
Xu, P., Jia, C., Li, Y., Sun, Q., & Liu, R. (2015). Developing an Enhanced Short-Range Railroad Track Condition Prediction Model for Optimal Maintenance Scheduling. Mathematical Problems in Engineering, 2015(3), 1–12. doi:10.1155/2015/796171.
Shafahi, Y., & Hakhamaneshi, R. (2009). Application of a maintenance management model for Iranian Railways based on the Markov chain and probabilistic dynamic programming. Scientia Iranica, 16(1 A), 87–97.
Giunta, M., Bressi, S., & D’Angelo, G. (2018). Life cycle cost assessment of bitumen stabilized ballast: A novel maintenance strategy for railway track-bed. Construction and Building Materials, 172, 751–759. doi:10.1016/j.conbuildmat.2018.04.020.
Rempelos, G., Ortega, A., Blainey, S., Preston, J., Le Pen, L., & Armstrong, J. (2020). A method for assessing the life cycle costs of modifications to ballasted track systems. Construction and Building Materials, 263, 120603. doi:10.1016/j.conbuildmat.2020.120603.
Su, Z., & Schutter, B. De. (2018). Optimal scheduling of track maintenance activities for railway networks. IFAC-PapersOnLine, 51(9), 386–391. doi:10.1016/j.ifacol.2018.07.063.
Kaewunruen, S., & Remennikov, A. M. (2010). Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads. Journal of Structural Engineering, 136(6), 749–754. doi:10.1061/(asce)st.1943-541x.0000152.
Sun, Y. Q., & Dhanasekar, M. (2002). A dynamic model for the vertical interaction of the rail track and wagon system. International Journal of Solids and Structures, 39(5), 1337–1359. doi:10.1016/S0020-7683(01)00224-4.
Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281–294. doi:10.1061/(asce)gt.1943-5606.0000598.
You, R., Li, D., Ngamkhanong, C., Janeliukstis, R., & Kaewunruen, S. (2017). Fatigue life assessment method for prestressed concrete sleepers. Frontiers in Built Environment, 3. doi:10.3389/fbuil.2017.00068.
Remennikov, A. M., & Kaewunruen, S. (2008). A review of loading conditions for railway track structures due to train and track vertical interaction. Structural Control and Health Monitoring, 15(2), 207–234. doi:10.1002/stc.227.
Molodova, M., Li, Z., & Dollevoet, R. (2011). Axle box acceleration: Measurement and simulation for detection of short track defects. Wear, 271(1–2), 349–356. doi:10.1016/j.wear.2010.10.003.
Diana, G., Bruni, S., Corradi, R., & DI Gialleonardo, E. (2012). On the derailment of a railway vehicle. Influence of different parameters. Ingegneria Ferroviaria, 2, 109-135.
Marquis, B., & Greif, R. (2011). Application of Nadal Limit for the Prediction of Wheel Climb Derailment. 2011 Joint Rail Conference. doi:10.1115/jrc2011-56064.
Spiroiu, M. A. (2016). Wheel-rail dynamic forces induced by random vertical track irregularities. IOP Conference Series: Materials Science and Engineering, 147, 012117. doi:10.1088/1757-899x/147/1/012117.
Caetano, L. F., & Teixeira, P. F. (2015). Optimisation model to schedule railway track renewal operations: a life-cycle cost approach. Structure and Infrastructure Engineering, 11(11), 1524–1536. doi:10.1080/15732479.2014.982133.
Pereira, R. H. M. (2019). Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro. Journal of Transport Geography, 74, 321–332. doi:10.1016/j.jtrangeo.2018.12.005.
Yamashita, T., Yamashita, K., & Kamimura, R. (2007). A stepwise AIC method for variable selection in linear regression. Communications in Statistics - Theory and Methods, 36(13), 2395–2403. doi:10.1080/03610920701215639.
NBR-16387. (2020). Railway-Classification of tracks. Brazilian Association of Technical Standards, Rio de Janeiro, Brazil.
DOI: 10.28991/CEJ-2023-09-02-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Isaias Pereira Seraco, Hostilio Xavier Ratton Neto
This work is licensed under a Creative Commons Attribution 4.0 International License.