Contribution to Railway Track Maintenance Planning from the Analysis of Dynamic Movements of Trains

Isaias Pereira Seraco, Hostilio Xavier Ratton Neto


Dynamic movements of trains in relation to the track have a significant impact on the displacement stability of rail vehicles, having effects inclusive of operational safety. Although there are numerous approaches to track maintenance planning, most of them are based solely on long-term geometric degradation assessments without taking into account any dynamic parameters in assessing operational safety or establishing means to predict future rolling stock accelerations relative to the track in order to develop safer maintenance plans. This paper introduces a method of track maintenance planning based on geometric degradation modeling and prediction of rolling stock vertical and horizontal acceleration. The goal is to establish how frequent geometric maintenance is necessary to ensure operational safety under geometric and dynamic criteria. This approach is based on regression models defined from geometric and dynamic inspection data. The method was applied in a passenger railway and obtained expressive results that corroborated the need of considering dynamic aspects on maintenance planning, as sections of the analyzed railway were identified with operation becoming unsafe, under the dynamic criterion, before the geometric safety tolerances are reached. This work is intended not only to propose a planning method but also to present to the scientific and technical communities a novel approach to be explored and developed in future research. The obtained results, therefore, do more than confirm quantitatively the relevance of this analysis; they also demonstrate qualitatively how promising the development of this thematic field is. In this regard, this work also presents in its conclusions some research opportunities to be explored for the development of this theme.


Doi: 10.28991/CEJ-2023-09-02-02

Full Text: PDF


Railway; Track; Maintenance; Dynamic safety; Accelerations.


Soleimanmeigouni, I., Ahmadi, A., & Kumar, U. (2018). Track geometry degradation and maintenance modelling: A review. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(1), 73–102. doi:10.1177/0954409716657849.

Koohmishi, M. (2019). Drainage potential of degraded railway ballast considering initial gradation and intrusion of external fine materials. Soils and Foundations, 59(6), 2265–2278. doi:10.1016/j.sandf.2019.12.011.

Kaewunruen, S., Ngamkhanong, C., & Lim, C. H. (2018). Damage and failure modes of railway prestressed concrete sleepers with holes/web openings subject to impact loading conditions. Engineering Structures, 176, 840–848. doi:10.1016/j.engstruct.2018.09.057.

Koohmishi, M., & Palassi, M. (2020). Degradation of railway ballast under impact loading considering the morphological properties of aggregate. Transportation Geotechnics, 25. doi:10.1016/j.trgeo.2020.100398.

Pang, Y., Lingamanaik, S. N., Chen, B. K., & Yu, S. F. (2020). Measurement of deformation of the concrete sleepers under different support conditions using non-contact laser speckle imaging sensor. Engineering Structures, 205. doi:10.1016/j.engstruct.2019.110054.

Hu, Y., Zhou, L., Ding, H. H., Tan, G. X., Lewis, R., Liu, Q. Y., Guo, J., & Wang, W. J. (2020). Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribology International, 143, 106091. doi:10.1016/j.triboint.2019.106091.

Kang, C., Schneider, S., Wenner, M., & Marx, S. (2020). Experimental investigation on rail fatigue resistance of track/bridge interaction. Engineering Structures, 216, 110747. doi:10.1016/j.engstruct.2020.110747.

Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. doi:10.1111/mice.12453.

Ribeiro, F. B., Do Nascimento, F. A. C., & da Silva, M. A. V. (2022). Environmental performance analysis of railway infrastructure using life cycle assessment: Selecting pavement projects based on global warming potential impacts. Journal of Cleaner Production, 365, 132558. doi:10.1016/j.jclepro.2022.132558.

Benedetto, A., Bianchini Ciampoli, L., Brancadoro, M. G., Alani, A. M., & Tosti, F. (2018). A Computer-Aided Model for the Simulation of Railway Ballast by Random Sequential Adsorption Process. Computer-Aided Civil and Infrastructure Engineering, 33(3), 243–257. doi:10.1111/mice.12342.

Sasidharan, M., Burrow, M. P. N., & Ghataora, G. S. (2020). A whole life cycle approach under uncertainty for economically justifiable ballasted railway track maintenance. Research in Transportation Economics, 80, 100815. doi:10.1016/j.retrec.2020.100815.

Burrow, M. P. N., Naito, S., & Evdorides, H. T. (2009). Network-level railway track maintenance management model. Transportation Research Record, 2117(2117), 66–76. doi:10.3141/2117-09.

Federal Railroad Administration. (2008). Track Safety Standards Compliance Manual. Office of Safety Assurance and Compliance, United States Department of Transportation, Washington, United States.

Roghani, A., & Hendry, M. T. (2017). Quantifying the impact of subgrade stiffness on track quality and the development of geometry defects. Journal of Transportation Engineering, 143(7), 4017029. doi:10.1061/JTEPBS.0000043.

Higgins, C., & Liu, X. (2018). Modeling of track geometry degradation and decisions on safety and maintenance: A literature review and possible future research directions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(5), 1385–1397. doi:10.1177/0954409717721870.

Le Pen, L., Milne, D., Watson, G., Harkness, J., & Powrie, W. (2020). A model for the stochastic prediction of track support stiffness. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234(5), 468–481. doi:10.1177/0954409719841800.

Van Der Westhuizen, N. J., & Grabe, P. J. (2013). The integration of railway asset management information to ensure maintenance effectiveness. Journal of the South African Institution of Civil Engineering, 55(3), 18-29.

Sharma, S., Cui, Y., He, Q., Mohammadi, R., & Li, Z. (2018). Data-driven optimization of railway maintenance for track geometry. Transportation Research Part C: Emerging Technologies, 90, 34–58. doi:10.1016/j.trc.2018.02.019.

Bakhtiary, A., Zakeri, J. A., & Mohammadzadeh, S. (2021). An opportunistic preventive maintenance policy for tamping scheduling of railway tracks. International Journal of Rail Transportation, 9(1), 1–22. doi:10.1080/23248378.2020.1737256.

EN 13848–5. (2008). Railway applications – track – track geometry quality – Part 5: Geometric quality levels. Brussels, Belgium: CEN (European Committee for Standardization).

Soleimanmeigouni, I., Ahmadi, A., Khajehei, H., & Nissen, A. (2020). Investigation of the effect of the inspection intervals on the track geometry condition. Structure and Infrastructure Engineering, 16(8), 1138–1146. doi:10.1080/15732479.2019.1687528.

Rahimikelarijani, B., Mohassel, A., & Hamidi, M. (2020). Railroad Track Geometric Degradation Analysis: A BNSF Case Study. Journal of Transportation Engineering, Part A: Systems, 146(2), 4019068. doi:10.1061/jtepbs.0000303.

Litherland, J., & Andrews, J. (2020). A petri net methodology for modelling the maintenance of railway route sections. Proceedings of the 29th European Safety and Reliability Conference (ESREL 2019), 22-26 September, 2019, Hanover, Germany.

Allah Bukhsh, Z., Saeed, A., Stipanovic, I., & Doree, A. G. (2019). Predictive maintenance using tree-based classification techniques: A case of railway switches. Transportation Research Part C: Emerging Technologies, 101, 35–54. doi:10.1016/j.trc.2019.02.001.

Su, Z., Jamshidi, A., Núñez, A., Baldi, S., & De Schutter, B. (2017). Multi-level condition-based maintenance planning for railway infrastructures – A scenario-based chance-constrained approach. Transportation Research Part C: Emerging Technologies, 84, 92–123. doi:10.1016/j.trc.2017.08.018.

Singh, R. P., Nimbalkar, S., Singh, S., & Choudhury, D. (2020). Field assessment of railway ballast degradation and mitigation using geotextile. Geotextiles and Geomembranes, 48(3), 275–283. doi:10.1016/j.geotexmem.2019.11.013.

Andrews, J., Prescott, D., & De Rozières, F. (2014). A stochastic model for railway track asset management. Reliability Engineering & System Safety, 130, 76–84. doi:10.1016/j.ress.2014.04.021.

Wen, M., Li, R., & Salling, K. B. (2016). Optimization of preventive condition-based tamping for railway tracks. European Journal of Operational Research, 252(2), 455–465. doi:10.1016/j.ejor.2016.01.024.

Lee, J. S., Choi, I. Y., Kim, I. K., & Hwang, S. H. (2018). Tamping and Renewal Optimization of Ballasted Track Using Track Measurement Data and Genetic Algorithm. Journal of Transportation Engineering, Part A: Systems, 144(3). doi:10.1061/jtepbs.0000120.

Khouzani, A. H. E., Golroo, A., & Bagheri, M. (2016). Railway maintenance management using a stochastic geometrical degradation model. Journal of Transportation Engineering, 143(1), 4016002. doi:10.1061/JTEPBS.0000002.

Khajehei, H., Ahmadi, A., Soleimanmeigouni, I., & Nissen, A. (2019). Allocation of effective maintenance limit for railway track geometry. Structure and Infrastructure Engineering, 15(12), 1597–1612. doi:10.1080/15732479.2019.1629464.

Nielsen, J. C. O., & Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, 441–456. doi:10.1016/j.jsv.2017.10.005.

Andrade, A. R., & Teixeira, P. F. (2015). Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models. Reliability Engineering and System Safety, 142, 169–183. doi:10.1016/j.ress.2015.05.009.

Su, Z., Jamshidi, A., Núñez, A., Baldi, S., & De Schutter, B. (2019). Integrated condition-based track maintenance planning and crew scheduling of railway networks. Transportation Research Part C: Emerging Technologies, 105, 359–384. doi:10.1016/j.trc.2019.05.045.

Sadeghi, J., Heydari, H., & Doloei, E. A. (2017). Improvement of railway maintenance approach by developing a new railway condition index. Journal of Transportation Engineering, 143(8), 4017037. doi:10.1061/JTEPBS.0000063.

Neuhold, J., Vidovic, I., & Marschnig, S. (2020). Preparing Track Geometry Data for Automated Maintenance Planning. Journal of Transportation Engineering, Part A: Systems, 146(5), 4020032. doi:10.1061/jtepbs.0000349.

Yang, Y., Liu, G., & Wang, X. (2021). Time–frequency characteristic analysis method for track geometry irregularities based on multivariate empirical mode decomposition and Hilbert spectral analysis. Vehicle System Dynamics, 59(5), 719–742. doi:10.1080/00423114.2019.1711137.

Morais, J., Santos, C., Morais, P., Paixão, A., Fortunato, E., Asseiceiro, F., Alvarenga, P., & Gomes, L. (2019). Continuous monitoring and evaluation of railway tracks: System description and assessment. Procedia Structural Integrity, 17, 448–455. doi:10.1016/j.prostr.2019.08.059.

Lima, J. B. de, Lopes, L. A. S., & Aragão Filho, L. A. C. M. de. (2021). Contribuição à manutenção da via permanente com acelerômetros em pacotes inerciais portáteis. Research, Society and Development, 10(6), e3910615369. doi:10.33448/rsd-v10i6.15369.

Guler, H., Jovanovic, S., & Evren, G. (2011). Modelling railway track geometry deterioration. Proceedings of the Institution of Civil Engineers: Transport, 164(2), 65–75. doi:10.1680/tran.2011.164.2.65.

Guler, H. (2016). Optimisation of railway track maintenance and renewal works by genetic algorithms. Gradjevinar, 68(12), 979–993. doi:10.14256/JCE.1458.2015.

Mohammadi, R., He, Q., Ghofrani, F., Pathak, A., & Aref, A. (2019). Exploring the impact of foot-by-foot track geometry on the occurrence of rail defects. Transportation Research Part C: Emerging Technologies, 102, 153–172. doi:10.1016/j.trc.2019.03.004.

Varandas, J. N., Paixão, A., Fortunato, E., Zuada Coelho, B., & Hölscher, P. (2020). Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation. Computers and Geotechnics, 126, 103712. doi:10.1016/j.compgeo.2020.103712.

Youqin Huang, J. (2021). Nadal’s Limit (L/V) to Wheel Climb and Two Derailment Modes. Engineering Physics, 5(1), 1-8. doi:10.11648/j.ep.20210501.12.

Barbosa, R. S. (2016). New method for railway track quality identification through the safety dynamic performance of instrumented railway vehicle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(8), 2265–2275. doi:10.1007/s40430-015-0471-9.

Gullers, P., Andersson, L., & Lundén, R. (2008). High-frequency vertical wheel-rail contact forces-Field measurements and influence of track irregularities. Wear, 265(9–10), 1472–1478. doi:10.1016/j.wear.2008.02.035.

Bocciolone, M., Caprioli, A., Cigada, A., & Collina, A. (2007). A measurement system for quick rail inspection and effective track maintenance strategy. Mechanical Systems and Signal Processing, 21(3), 1242–1254. doi:10.1016/j.ymssp.2006.02.007.

Lee, J. S., Choi, S., Kim, S. S., Kim, Y. G., Kim, S. W., & Park, C. (2011). Track condition monitoring by in-service trains: a comparison between axle-box and bogie accelerometers. 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011). doi:10.1049/cp.2011.0586.

Weston, P., Roberts, C., Yeo, G., & Stewart, E. (2015). Perspectives on railway track geometry condition monitoring from in-service railway vehicles. Vehicle System Dynamics, 53(7), 1063–1091. doi:10.1080/00423114.2015.1034730.

Lederman, G., Chen, S., Garrett, J., Kovačević, J., Noh, H. Y., & Bielak, J. (2017). Track-monitoring from the dynamic response of an operational train. Mechanical Systems and Signal Processing, 87, 1–16. doi:10.1016/j.ymssp.2016.06.041.

Jovanovic, S. (2005). Modern railway infrastructure asset management. Proceedings of the 24th Southern African Transport Conference, 11-13 July, 2005, Pretoria, South Africa.

Xu, P., Jia, C., Li, Y., Sun, Q., & Liu, R. (2015). Developing an Enhanced Short-Range Railroad Track Condition Prediction Model for Optimal Maintenance Scheduling. Mathematical Problems in Engineering, 2015(3), 1–12. doi:10.1155/2015/796171.

Shafahi, Y., & Hakhamaneshi, R. (2009). Application of a maintenance management model for Iranian Railways based on the Markov chain and probabilistic dynamic programming. Scientia Iranica, 16(1 A), 87–97.

Giunta, M., Bressi, S., & D’Angelo, G. (2018). Life cycle cost assessment of bitumen stabilized ballast: A novel maintenance strategy for railway track-bed. Construction and Building Materials, 172, 751–759. doi:10.1016/j.conbuildmat.2018.04.020.

Rempelos, G., Ortega, A., Blainey, S., Preston, J., Le Pen, L., & Armstrong, J. (2020). A method for assessing the life cycle costs of modifications to ballasted track systems. Construction and Building Materials, 263, 120603. doi:10.1016/j.conbuildmat.2020.120603.

Su, Z., & Schutter, B. De. (2018). Optimal scheduling of track maintenance activities for railway networks. IFAC-PapersOnLine, 51(9), 386–391. doi:10.1016/j.ifacol.2018.07.063.

Kaewunruen, S., & Remennikov, A. M. (2010). Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads. Journal of Structural Engineering, 136(6), 749–754. doi:10.1061/(asce)st.1943-541x.0000152.

Sun, Y. Q., & Dhanasekar, M. (2002). A dynamic model for the vertical interaction of the rail track and wagon system. International Journal of Solids and Structures, 39(5), 1337–1359. doi:10.1016/S0020-7683(01)00224-4.

Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281–294. doi:10.1061/(asce)gt.1943-5606.0000598.

You, R., Li, D., Ngamkhanong, C., Janeliukstis, R., & Kaewunruen, S. (2017). Fatigue life assessment method for prestressed concrete sleepers. Frontiers in Built Environment, 3. doi:10.3389/fbuil.2017.00068.

Remennikov, A. M., & Kaewunruen, S. (2008). A review of loading conditions for railway track structures due to train and track vertical interaction. Structural Control and Health Monitoring, 15(2), 207–234. doi:10.1002/stc.227.

Molodova, M., Li, Z., & Dollevoet, R. (2011). Axle box acceleration: Measurement and simulation for detection of short track defects. Wear, 271(1–2), 349–356. doi:10.1016/j.wear.2010.10.003.

Diana, G., Bruni, S., Corradi, R., & DI Gialleonardo, E. (2012). On the derailment of a railway vehicle. Influence of different parameters. Ingegneria Ferroviaria, 2, 109-135.

Marquis, B., & Greif, R. (2011). Application of Nadal Limit for the Prediction of Wheel Climb Derailment. 2011 Joint Rail Conference. doi:10.1115/jrc2011-56064.

Spiroiu, M. A. (2016). Wheel-rail dynamic forces induced by random vertical track irregularities. IOP Conference Series: Materials Science and Engineering, 147, 012117. doi:10.1088/1757-899x/147/1/012117.

Caetano, L. F., & Teixeira, P. F. (2015). Optimisation model to schedule railway track renewal operations: a life-cycle cost approach. Structure and Infrastructure Engineering, 11(11), 1524–1536. doi:10.1080/15732479.2014.982133.

Pereira, R. H. M. (2019). Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro. Journal of Transport Geography, 74, 321–332. doi:10.1016/j.jtrangeo.2018.12.005.

Yamashita, T., Yamashita, K., & Kamimura, R. (2007). A stepwise AIC method for variable selection in linear regression. Communications in Statistics - Theory and Methods, 36(13), 2395–2403. doi:10.1080/03610920701215639.

NBR-16387. (2020). Railway-Classification of tracks. Brazilian Association of Technical Standards, Rio de Janeiro, Brazil.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-02


  • There are currently no refbacks.

Copyright (c) 2023 Isaias Pereira Seraco, Hostilio Xavier Ratton Neto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.