Stress Path Behaviour and Friction Angle Transition Due to the Cyclic Loading Effects
Downloads
Doi: 10.28991/CEJ-2023-09-04-010
Full Text: PDF
[2] S Huat, B. B., Prasad, A., Kazemian, S., & Anggraini, V. (2019). Ground improvement techniques. CRC Press, London, United Kingdom. doi:10.1201/9780429507656.
[3] Whitlow, R. (2001). Basic soil mechanics (4th Ed.). Pearson Education, London, United Kingdom.
[4] Gosling, D., & Keeton, P. (2008). Problems with Testing Peat for Stability Analysis. Peat Seminar, The Geological Society, 11 March, 2008, Edinburgh, Scotland.
[5] Boylan, N., & Long, M. (2014). Evaluation of peat strength for stability assessments. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 167(5), 421–430. doi:10.1680/geng.12.00043.
[6] Warburton, J., Holden, J., & Mills, A. J. (2004). Hydrological controls of surficial mass movements in peat. Earth-Science Reviews, 67(1–2), 139–156. doi:10.1016/j.earscirev.2004.03.003.
[7] Boylan, N., Jennings, P., & Long, M. (2008). Peat slope failure in Ireland. Quarterly Journal of Engineering Geology and Hydrogeology, 41(1), 93–108. doi:10.1144/1470-9236/06-028.
[8] Das, B. M. (2021). Principles of geotechnical engineering. Cengage Learning, Boston, United States.
[9] Erken, A., Kaya, Z., & Šžener, A. (2008). Post Cyclic Shear Strength of Fine Grained Soils in Adapazari–Turkey during 1999 Kocaeli Earthquake. 14th World Conference on Earthquake Engineering, 12-17 October, Beijing, China.
[10] Ghadr, S., Assadi-Langroudi, A., & Hung, C. (2020). Stabilization of peat with colloidal nanosilica. Mires and Peat, 26, 1–13. doi:10.19189/MaP.2019.OMB.StA.1896.
[11] Edil, T. B. (2003). Recent advances in geotechnical characterization and construction over peats and organic soils. Proceedings 2nd International Conference on Advances in Soft Soil Engineering and Technology, 2-4 July, 2003, Putrajaya, Malaysia.
[12] Yamaguchi, H., Hashizume, Y., & Ikenaga, H. (1992). Change in pore size distribution of peat in shear processes. Soils and Foundations, 32(4), 1–16. doi:10.3208/sandf1972.32.4_1.
[13] Cola, S., & Cortellazzo, G. (2005). The shear strength behavior of two peaty soils. Geotechnical and Geological Engineering, 23(6), 679–695. doi:10.1007/s10706-004-9223-9.
[14] Mohamad, H. M., Zainorabidin, A., & Mohamad, M. I. (2022). Maximum Strain Effect and Secant Modulus Variation of Hemic Peat Soil at large Deformation due to Cyclic Loading. Civil Engineering Journal (Iran), 8(10), 2243–2260. doi:10.28991/CEJ-2022-08-10-015.
[15] Mohamad, H. M., Adnan, Z., & Hassan, N. A. (2022). Influence of Cyclic Loading to the Post- Cyclic Shear Strength Behaviour of Peat Soil. Journal of Engineering Science and Technology, 17(4), 2997–3011.
[16] Vucetic, M. (1994). Cyclic threshold shear strains in soils. Journal of Geotechnical Engineering, 120(12), 2208–2228. doi:10.1061/(ASCE)0733-9410(1994)120:12(2208).
[17] Farrell, E. R., & Hebib, S. (1998). The determination of the geotechnical parameters of organic soils. Problematic Soils, 33-36.
[18] Boulanger, R. W., Arulnathan, R., Harder, L. F., Torres, R. A., & Driller, M. W. (1998). Dynamic Properties of Sherman Island Peat. Journal of Geotechnical and Geoenvironmental Engineering, 124(1), 12–20. doi:10.1061/(asce)1090-0241(1998)124:1(12).
[19] Ishihara, K. (1997). Soil behaviour in earthquake geotechnics. (1997). Choice Reviews Online, 34(09), 34-5113-34–5113. doi:10.5860/choice.34-5113.
[20] Yang, J., & Sze, H. Y. (2011). Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Geotechnique, 61(1), 59–73. doi:10.1680/geot.9.P.019.
[21] Azhar, A. T. S., Norhaliza, W., Ismail, B., Abdullah, M. E., & Zakaria, M. N. (2016). Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor. IOP Conference Series: Materials Science and Engineering, 160, 012058. doi:10.1088/1757-899x/160/1/012058.
[22] Masirin, M. I. M., Ali, A. S. B., Mustapa, M. S., Rahman, R. A., Wagiman, A., & Aziz, M. I. (2020). Analysis of physical and microstructural properties on parit nipah peat particles as sustainable asphalt modifier. Materials Science Forum, Trans Tech Publications Ltd, 975, 197-202. doi:10.4028/www.scientific.net/MSF.975.197.
[23] Zainorabidin, A., & Mansor, S. H. (2015). Comparative Study of Stress-Strain Characteristic of Peat Soil. Applied Mechanics and Materials, 773–774(February), 1448–1452. doi:10.4028/www.scientific.net/amm.773-774.1448.
[24] Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.
[25] Huat, B. B. K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of organic soils and peat. CRC Press, London, United Kingdom. doi:10.1201/b15627.
[26] Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.
[27] O'Kelly, B. C. (2015). Atterberg limits are not appropriate for peat soils. Geotechnical Research, 2(3), 123–134. doi:10.1680/jgere.15.00007.
[28] BS 1377-8:1990. (1990). Soils for civil engineering purposes. Shear strength tests (effective stress) (AMD 8263). British Standards Institution, London, United Kingdom.
[29] Zolkefle, S. N. A. (2014). The dynamic characteristic of Southwest Johor peat under different frequencies. Master Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.
[30] Knappett, J., & Craig, R. F. (2019). Craig's soil mechanics (9th Ed.). CRC Press, London, United Kingdom. doi:10.1201/9781351052740.
[31] Lau, J. Z. E. (2019). Static and dynamic performance of biochar enhanced cement stabilized peat. Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom.
[32] Basri, K., Zainorabidin, A., Mohamad, H. M., & Musta, B. (2021). Determining the peat soil dynamic properties using geophysical methods. Magazine of Civil Engineering, 105(5). doi:10.34910/MCE.105.8.
[33] Mohamad, H. M., & Zainorabidin, A. (2021). Young'S Modulus of Peat Soil Under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.
[34] Hao, R., Zhang, Z., Guo, Z., Huang, X., Lv, Q., Wang, J., & Liu, T. (2022). Investigation of changes to triaxial shear strength parameters and microstructure of yili loess with drying–wetting cycles. Materials, 15(1), 255. doi:10.3390/ma15010255.
[35] Abdullah, H. H., Shahin, M. A., Walske, M. L., & Karrech, A. (2021). Cyclic behaviour of clay stabilized with fly-ash based geopolymer incorporating ground granulated slag. Transportation Geotechnics, 26. doi:10.1016/j.trgeo.2020.100430.
[36] Wang, S. (2011). Post cyclic behavior of low-plasticity silt. PhD Thesis, Missouri University of Science and Technology, Rolla"Ž, United States"Ž.
[37] Wang, S., Luna, R., & Onyejekwe, S. (2016). Effect of Initial Consolidation Condition on Post cyclic Undrained Monotonic Shear Behavior of Mississippi River Valley Silt. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 4015075. doi:10.1061/(asce)gt.1943-5606.0001401.
[38] Yasuhara, K., Hirao, K., & FL Hyde, A. (1992). Effects of cyclic loading on undrained strength and compressibility of clay. Soils and Foundations, 32(1), 100–116. doi:10.3208/sandf1972.32.100.
[39] Ho, J., Goh, S. H., & Lee, F. H. (2013). Post Cyclic Behaviour of Singapore Marine Clay. Le comportement post-cyclique de l'argile marine de Singapour. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2-6 September, 2013, Paris, France.
[40] Guo, L., Jin, H., Wang, J., & Shi, L. (2020). Undrained monotonic shear behavior of marine soft clay after long-term cyclic loading. Marine Georesources and Geotechnology, 38(7), 854–866. doi:10.1080/1064119X.2019.1636906.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.