Bond-slip Behaviour of NSM GFRP Bars in Reinforced Recycled-Aggregate Concrete: Experiments and a Modified Model

Anh-Tuan Le, Thuy Ninh Nguyen, Vui Van Cao

Abstract


Bond-slip behaviour of glass fiber-reinforced polymer (GFRP) bars embedded in conventional concrete has been widely investigated. In contrast, the bond-slip behaviour of near-surface mounted (NSM) GFRP bars bonded in reinforced recycled aggregate concrete (RAC) seems to be less explored, while recycled materials have been increasingly used due to reasons of environmental pollution and resource exhaustion. This study aimed to experimentally and theoretically examine the bond-slip behaviour of NSM GFRP bars in reinforced RAC under monotonic and cyclic loadings. To achieve this aim, twenty-four tests were performed, which were divided into two groups by monotonic and cyclic loadings. In each group, twelve tests were performed on ten reinforced RAC specimens and two reinforced normal aggregate concrete (NAC) specimens. The test results confirmed the brittle shear failure of concrete in the proximity of a resin-concrete surface. Bond-slip behaviour can be characterized by nonlinear and linear branches, in which the linear branch dominates the behaviour. Under monotonic and cyclic loadings, the average slips of GFRP bars in reinforced RAC were 0.238 and 0.284 mm, and their coefficients of variation (COV) were relatively large at 0.142 and 0.130, respectively. In contrast, ultimate loads had a relatively low COV of around 0.038. The effect of cyclic loading significantly increased the ultimate slip by 19.3%, whereas it negligibly reduced the ultimate load; consequently, the stiffness was reduced by 19.4%. A modified smooth model was proposed to predict the bond-slip behaviour of NSM GFRP bars in reinforced RAC under monotonic and cyclic loadings. The simplicity and accuracy of the model can be useful for engineers in structural retrofitting using NSM FRP technique.

 

Doi: 10.28991/CEJ-2023-09-02-01

Full Text: PDF


Keywords


GFRP; Near-Surface Mounted; Bond-slip Behaviour; Recycled-Aggregate Concrete; Strengthening.

References


Mansour, M., & El-Maaddawy, T. (2021). Testing and modeling of deep beams strengthened with NSM-CFRP reinforcement around cutouts. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00670.

Imjai, T., Setkit, M., Garcia, R., & Figueiredo, F. P. (2020). Strengthening of damaged low strength concrete beams using PTMS or NSM techniques. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00403.

Obaidat, Y. T., Barham, W. S., Obaidat, A. T., & Attar, K. M. (2021). Behavior of NSM CFRP reinforced concrete columns: Experimental and analytical work. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00589.

Seifi, A., Hosseini, A., Marefat, M. S., & Zareian, M. S. (2017). Improving seismic performance of old-type RC frames using NSM technique and FRP jackets. Engineering Structures, 147, 705–723. doi:10.1016/j.engstruct.2017.06.034.

Panahi, M., Zareei, S. A., & Izadi, A. (2021). Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00601.

Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., Pecce, M., & Manfredi, G. (2011). Bond Efficiency of EBR and NSM FRP Systems for Strengthening Concrete Members. Journal of Composites for Construction, 15(5), 757–772. doi:10.1061/(asce)cc.1943-5614.0000204.

Bilotta, A., Ceroni, F., Nigro, E., & Pecce, M. (2014). Strain assessment for the design of NSM FRP systems for the strengthening of RC members. Construction and Building Materials, 69, 143–158. doi:10.1016/j.conbuildmat.2014.07.024.

Dias, S. J. E., Barros, J. A. O., & Janwaen, W. (2018). Behavior of RC beams flexurally strengthened with NSM CFRP laminates. Composite Structures, 201, 363–376. doi:10.1016/j.compstruct.2018.05.126.

Lu, X. Z., Teng, J. G., Ye, L. P., & Jiang, J. J. (2005). Bond-slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 27(6), 920–937. doi:10.1016/j.engstruct.2005.01.014.

Teng, J. G., Zhang, S. S., Dai, J. G., & Chen, J. F. (2013). Three-dimensional meso-scale finite element modeling of bonded joints between a near-surface mounted FRP strip and concrete. Computers and Structures, 117, 105–117. doi:10.1016/j.compstruc.2012.12.002.

Hassan, T., & Rizkalla, S. (2003). Investigation of Bond in Concrete Structures Strengthened with Near Surface Mounted Carbon Fiber Reinforced Polymer Strips. Journal of Composites for Construction, 7(3), 248–257. doi:10.1061/(asce)1090-0268(2003)7:3(248).

de Sena Cruz, J. M., & Oliveira de Barros, J. A. (2004). Bond Between Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Laminate Strips and Concrete. Journal of Composites for Construction, 8(6), 519–527. doi:10.1061/(asce)1090-0268(2004)8:6(519).

Rashid, R., Oehlers, D. J., & Seracino, R. (2008). IC Debonding of FRP NSM and EB Retrofitted Concrete: Plate and Cover Interaction Tests. Journal of Composites for Construction, 12(2), 160–167. doi:10.1061/(asce)1090-0268(2008)12:2(160).

Oehlers, D. J., Haskett, M., Wu, C., & Seracino, R. (2008). Embedding NSM FRP Plates for Improved IC Debonding Resistance. Journal of Composites for Construction, 12(6), 635–642. doi:10.1061/(asce)1090-0268(2008)12:6(635).

Vasquez, D., & Seracino, R. (2010). Assessment of the predictive performance of existing analytical models for debonding of near-surface mounted FRP strips. Advances in Structural Engineering, 13(2), 299–308. doi:10.1260/1369-4332.13.2.299.

Zhang, S. S., Teng, J. G., & Yu, T. (2013). Bond-slip model for CFRP strips near-surface mounted to concrete. Engineering Structures, 56, 945–953. doi:10.1016/j.engstruct.2013.05.032.

Zhang, S. S., Teng, J. G., & Yu, T. (2014). Bond Strength Model for CFRP Strips Near-Surface Mounted to Concrete. Journal of Composites for Construction, 18(3). doi:10.1061/(asce)cc.1943-5614.0000402.

Dai, J., Ueda, T., & Sato, Y. (2005). Development of the Nonlinear Bond Stress–Slip Model of Fiber Reinforced Plastics Sheet–Concrete Interfaces with a Simple Method. Journal of Composites for Construction, 9(1), 52–62. doi:10.1061/(asce)1090-0268(2005)9:1(52).

De Lorenzis, L., & Nanni, A. (2002). Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening. ACI Structural Journal, 99(2), 123–132. doi:10.14359/11534.

De Lorenzis, L., Rizzo, A., & La Tegola, A. (2002). A modified pull-out test for bond of near-surface mounted FRP rods in concrete. Composites Part B: Engineering, 33(8), 589–603. doi:10.1016/S1359-8368(02)00052-5.

Galati, D., & De Lorenzis, L. (2009). Effect of construction details on the bond performance of NSM FRP bars in concrete. Advances in Structural Engineering, 12(5), 683–700. doi:10.1260/136943309789867836.

Soliman, S. M., El-Salakawy, E., & Benmokrane, B. (2011). Bond Performance of Near-Surface-Mounted FRP Bars. Journal of Composites for Construction, 15(1), 103–111. doi:10.1061/(asce)cc.1943-5614.0000150.

Sharaky, I. A., Torres, L., Baena, M., & Vilanova, I. (2013). Effect of different material and construction details on the bond behaviour of NSM FRP bars in concrete. Construction and Building Materials, 38, 890–902. doi:10.1016/j.conbuildmat.2012.09.015.

Sharaky, I. A., Torres, L., Baena, M., & Miàs, C. (2013). An experimental study of different factors affecting the bond of NSM FRP bars in concrete. Composite Structures, 99, 350–365. doi:10.1016/j.compstruct.2012.12.014.

Kalupahana, W. K. K. G., Ibell, T. J., & Darby, A. P. (2013). Bond characteristics of near surface mounted CFRP bars. Construction and Building Materials, 43, 58–68. doi:10.1016/j.conbuildmat.2013.01.021.

Lee, D., Cheng, L., & Yan-Gee Hui, J. (2013). Bond Characteristics of Various NSM FRP Reinforcements in Concrete. Journal of Composites for Construction, 17(1), 117–129. doi:10.1061/(asce)cc.1943-5614.0000318.

Caro, M., Jemaa, Y., Dirar, S., & Quinn, A. (2017). Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Engineering Structures, 147, 448–457. doi:10.1016/j.engstruct.2017.05.069.

Gómez, J., Torres, L., & Barris, C. (2020). Characterization and simulation of the bond response of NSM FRP reinforcement in Concrete. Materials, 13(7), 1770. doi:10.3390/MA13071770.

Gómez, J., Barris, C., Jahani, Y., Baena, M., & Torres, L. (2021). Experimental study and numerical prediction of the bond response of NSM CFRP laminates in RC elements under sustained loading. Construction and Building Materials, 288, 123082. doi:10.1016/j.conbuildmat.2021.123082.

Zhang, R., & Xue, X. (2021). A predictive model for the bond strength of near-surface-mounted FRP bonded to concrete. Composite Structures, 262, 113618. doi:10.1016/j.compstruct.2021.113618.

Slaitas, J., & Valivonis, J. (2021). Bond strength evaluation methods of RC members strengthened with FRP composites. Engineering Structures, 249, 113357. doi:10.1016/j.engstruct.2021.113357.

Wang, X., & Cheng, L. (2021). Bond characteristics and modeling of near-surface mounted CFRP in concrete. Composite Structures, 255, 113011. doi:10.1016/j.compstruct.2020.113011.

Aghamohammadi, R., Nasrollahzadeh, K., Mofidi, A., & Gosling, P. (2021). Reliability-based assessment of bond strength models for near-surface mounted FRP bars and strips to concrete. Composite Structures, 272, 114132. doi:10.1016/j.compstruct.2021.114132.

Li, L., Mai, G., He, S., Xiong, Z., Wei, W., Luo, H., & Liu, F. (2021). Experimental study on bond behaviour between recycled aggregate concrete and basalt fibre-reinforced polymer bars under different strain rates. Construction and Building Materials, 290, 123218. doi:10.1016/j.conbuildmat.2021.123218.

Yazdani, A., Sanginabadi, K., Shahidzadeh, M. S., Salimi, M. R., & Shamohammadi, A. (2021). Consideration of data correlation to estimate FRP-to-concrete bond capacity models. Construction and Building Materials, 308, 125106. doi:10.1016/j.conbuildmat.2021.125106.

Mosallam, A. S., Ghabban, N., Mirnateghi, E., & Agwa, A. A. K. (2022). Nonlinear numerical simulation and experimental verification of bondline strength of CFRP strips embedded in concrete for NSM strengthening applications. Structural Concrete, 23(3), 1794–1815. doi:10.1002/suco.202100537.

Aljidda, O., El Refai, A., & Alnahhal, W. (2023). Comparative study on the bond performance of near-surface mounted fiber-reinforced polymer bars. Construction and Building Materials, 364, 129923. doi:10.1016/j.conbuildmat.2022.129923.

Sanginabadi, K., Yazdani, A., Mostofinejad, D., & Czaderski, C. (2022). RC members externally strengthened with FRP composites by grooving methods including EBROG and EBRIG: A state-of-the-art review. Construction and Building Materials, 324, 126662. doi:10.1016/j.conbuildmat.2022.126662.

Abbas, A., Fathifazl, G., Isgor, O. B., Razaqpur, A. G., Fournier, B., & Foo, S. (2009). Durability of recycled aggregate concrete designed with equivalent mortar volume method. Cement and Concrete Composites, 31(8), 555–563. doi:10.1016/j.cemconcomp.2009.02.012.

Casuccio, M., Torrijos, M. C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 22(7), 1500–1506. doi:10.1016/j.conbuildmat.2007.03.032.

Eguchi, K., Teranishi, K., Nakagome, A., Kishimoto, H., Shinozaki, K., & Narikawa, M. (2007). Application of recycled coarse aggregate by mixture to concrete construction. Construction and Building Materials, 21(7), 1542–1551. doi:10.1016/j.conbuildmat.2005.12.023.

Ismail, S., Kwan, W. H., & Ramli, M. (2017). Mechanical strength and durability properties of concrete containing treated recycled concrete aggregates under different curing conditions. Construction and Building Materials, 155(Supplement C), 296–306. doi:10.1016/j.conbuildmat.2017.08.076.

Thomas, C., Setién, J., Polanco, J. A., Alaejos, P., & Sánchez De Juan, M. (2013). Durability of recycled aggregate concrete. Construction and Building Materials, 40, 1054–1065. doi:10.1016/j.conbuildmat.2012.11.106.

Lei, B., Li, W., Tang, Z., Tam, V. W. Y., & Sun, Z. (2018). Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution. Construction and Building Materials, 163, 840–849. doi:10.1016/j.conbuildmat.2017.12.194.

Tam, V. W. Y., Kotrayothar, D., & Xiao, J. (2015). Long-term deformation behaviour of recycled aggregate concrete. Construction and Building Materials, 100, 262–272. doi:10.1016/j.conbuildmat.2015.10.013.

Jin, R., Li, B., Elamin, A., Wang, S., Tsioulou, O., & Wanatowski, D. (2018). Experimental Investigation of Properties of Concrete Containing Recycled Construction Wastes. International Journal of Civil Engineering, 16(11), 1621–1633. doi:10.1007/s40999-018-0301-4.

Kapoor, K., Singh, S. P., & Singh, B. (2018). Water Permeation Properties of Self Compacting Concrete Made with Coarse and Fine Recycled Concrete Aggregates. International Journal of Civil Engineering, 16(1), 47–56. doi:10.1007/s40999-016-0062-x.

Etxeberria, M., & Gonzalez-Corominas, A. (2018). Properties of Plain Concrete Produced Employing Recycled Aggregates and Sea Water. International Journal of Civil Engineering, 16(9), 993–1003. doi:10.1007/s40999-017-0229-0.

Liu, F., Yu, Y. Y., Li, L. J., & Zeng, L. (2018). Experimental study on reuse of recycled concrete aggregates for load-bearing components of building structures. Journal of Material Cycles and Waste Management, 20(2), 995–1005. doi:10.1007/s10163-017-0661-x.

Xu, J. J., Chen, Z. P., Ozbakkaloglu, T., Zhao, X. Y., & Demartino, C. (2018). A critical assessment of the compressive behavior of reinforced recycled aggregate concrete columns. Engineering Structures, 161, 161–175. doi:10.1016/j.engstruct.2018.02.003.

Fan, Y. J., Yu, B. S., & Wang, S. L. (2018). Analysis and Evaluation of the Stochastic Damage for Recycled Aggregate Concrete Frames under Seismic Action. International Journal of Civil Engineering, 16(7), 783–791. doi:10.1007/s40999-017-0203-x.

TCVN 7570. (2006). Aggregates for concrete and mortar (Technical Requirements). Vietnam Construction Standards, Hanoi, Vietnam. (In Vietnamese).

Ceroni, F., Pecce, M., Bilotta, A., & Nigro, E. (2012). Bond behavior of FRP NSM systems in concrete elements. Composites Part B: Engineering, 43(2), 99–109. doi:10.1016/j.compositesb.2011.10.017.

Ceroni, F., Barros, J. A. O., Pecce, M., & Ianniciello, M. (2013). Assessment of nonlinear bond laws for near-surface-mounted systems in concrete elements. Composites Part B: Engineering, 45(1), 666–681. doi:10.1016/j.compositesb.2012.07.006.

Singh, S. B., Reddy, A. L., & Khatri, C. P. (2014). Experimental and Parametric Investigation of Response of NSM CFRP-Strengthened RC Beams. Journal of Composites for Construction, 18(1), 04013021. doi:10.1061/(asce)cc.1943-5614.0000411.

ACI 440.2R-17. (2017). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, United States.

Ko, H., & Sato, Y. (2007). Bond Stress–Slip Relationship between FRP Sheet and Concrete under Cyclic Load. Journal of Composites for Construction, 11(4), 419–426. doi:10.1061/(asce)1090-0268(2007)11:4(419).

Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.

Beton CE-Id. Fib (CEB-FIP). (2012). Model Code 2010 – Final draft, Vol. 1. Fib Bulletin No. 65, International Federation for Structural Concrete (fib), Lausanne, Switzerland.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Tuan Anh Le, Thuy Ninh Nguyen, Vui Van Cao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message