Marine Resource Recovery Following the COVID-19 Event in Southern Thailand
Downloads
Doi: 10.28991/CEJ-2022-08-11-011
Full Text: PDF
[2] Patterson Edward, J. K., Jayanthi, M., Malleshappa, H., Immaculate Jeyasanta, K., Laju, R. L., Patterson, J., Diraviya Raj, K., Mathews, G., Marimuthu, A. S., & Grimsditch, G. (2021). COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish. Marine Pollution Bulletin, 165, 112–124. doi:10.1016/j.marpolbul.2021.112124.
[3] Rice, W. L., Mateer, T. J., Reigner, N., Newman, P., Lawhon, B., & Taff, B. D. (2020). Changes in recreational behaviors of outdoor enthusiasts during the COVID-19 pandemic: analysis across urban and rural communities. Journal of Urban Ecology, 6(1), 20. doi:10.1093/jue/juaa020.
[4] Masood, N., Zakaria, M. P., Halimoon, N., Aris, A. Z., Magam, S. M., Kannan, N., Mustafa, S., Ali, M. M., Keshavarzifard, M., Vaezzadeh, V., Alkhadher, S. A. A., & Al-Odaini, N. A. (2016). Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. Marine Pollution Bulletin, 102(1), 160–175. doi:10.1016/j.marpolbul.2015.11.032.
[5] Jones, K. R., Klein, C. J., Halpern, B. S., Venter, O., Grantham, H., Kuempel, C. D., Shumway, N., Friedlander, A. M., Possingham, H. P., & Watson, J. E. M. (2018). The Location and Protection Status of Earth's Diminishing Marine Wilderness. Current Biology, 28(15), 2506-2512.e3. doi:10.1016/j.cub.2018.06.010.
[6] Lecchini, D., Brooker, R. M., Waqalevu, V., Gairin, E., Minier, L., Berthe, C., Besineau, R., Blay, G., Maueau, T., Sturny, V., Bambridge, T., Sang, G. T., & Bertucci, F. (2021). Effects of COVID-19 pandemic restrictions on coral reef fishes at eco-tourism sites in Bora-Bora, French Polynesia. Marine Environmental Research, 170, 105451. doi:10.1016/j.marenvres.2021.105451.
[7] Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited: technical notes on modeling threats to the world's coral reefs. World Resources Institute, Washington, United States.
[8] Hughes, T. P., Kerry, J. T., ílvarez-Noriega, M., ílvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., ... Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373–377. doi:10.1038/nature21707.
[9] Munday, P. L. (2004). Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology, 10(10), 1642–1647. doi:10.1111/j.1365-2486.2004.00839.x.
[10] Riegl, B., Bruckner, A., Coles, S. L., Renaud, P., & Dodge, R. E. (2009). Coral reefs: Threats and conservation in an era of global change. Annals of the New York Academy of Sciences, 1162, 136–186. doi:10.1111/j.1749-6632.2009.04493.x.
[11] Rouphael, A. B., & Inglis, G. J. (2001). Take only photographs and leave only footprints?: An experimental study of the impacts of underwater photographers on coral reef dive sites. Biological Conservation, 100(3), 281–287. doi:10.1016/S0006-3207(01)00032-5.
[12] Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press, Champaign, United States.
[13] Manenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G. F., & Rubolini, D. (2020). The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country. Biological Conservation, 249, 108728. doi:10.1016/j.biocon.2020.108728.
[14] Valerio, M., Mann, O., & Shashar, N. (2019). "Boo! Did we scare you?”: behavioral responses of reef-associated fish, prawn gobies (Amblyeleotris Steinitzi and Amblyeleotris Sungami) to anthropogenic diver disturbance. Marine Biology, 166(1), 1–9. doi:10.1007/s00227-018-3447-3.
[15] Zellmer, A. J., Wood, E. M., Surasinghe, T., Putman, B. J., Pauly, G. B., Magle, S. B., Lewis, J. S., Kay, C. A. M., & Fidino, M. (2020). What can we learn from wildlife sightings during the COVID-19 global shutdown? Ecosphere, 11(8), 3215. doi:10.1002/ecs2.3215.
[16] Steneck, R. S., & Dethier, M. N. (1994). A Functional Group Approach to the Structure of Algal-Dominated Communities. Oikos, 69(3), 476. doi:10.2307/3545860.
[17] Triki, Z., & Bshary, R. (2019). Fluctuations in coral reef fish densities after environmental disturbances on the northern Great Barrier Reef. PeerJ, 2019(4), 6720. doi:10.7717/peerj.6720.
[18] Benevides, L. J., Cardozo-Ferreira, G. C., Ferreira, C. E. L., Pereira, P. H. C., Pinto, T. K., & Sampaio, C. L. S. (2019). Fear-induced behavioural modifications in damselfishes can be diver-triggered. Journal of Experimental Marine Biology and Ecology, 514–515, 34–40. doi:10.1016/j.jembe.2019.03.009.
[19] Brunnschweiler, J. M., & Earle, J. L. (2006). A contribution to marine life conservation efforts in the South Pacific: The Shark Reef Marine Reserve, Fiji. Cybium, 30(4), 133-139. doi:10.26028/cybium/2006-304supp-018.
[20] Drew, J. A., & McKeon, M. (2019). Shark-based tourism presents opportunities for facultative dietary shift in coral reef fish. PLoS ONE, 14(8), 221781. doi:10.1371/journal.pone.0221781.
[21] Feitosa, C. V., De Carvalho Teixeira Chaves, L. S., Ferreira, B. P., & De Arau- Jo, M. E. (2012). Recreational fish feeding inside Brazilian MPAs: Impacts on reef fish community structure. Journal of the Marine Biological Association of the United Kingdom, 92(7), 1525–1533. doi:10.1017/S0025315412000136.
[22] Milazzo, M., Anastasi, I., & Willis, T. J. (2006). Recreational fish feeding affects coastal fish behavior and increases frequency of predation on damselfish Chromis chromis nests. Marine Ecology Progress Series, 310, 165–172. doi:10.3354/meps310165.
[23] Jaroensutasinee, K., Somchuea, S., & Jaroensutasinee, M. (2021). Coral and reef fish community recovery following the 2010 extreme ocean warming event (mass bleaching event) at Thailand. Journal of Animal Behaviour and Biometeorology, 9(1), 1–11. doi:10.31893/JABB.21004.
[24] English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical marine resources. Australian Institute of Marine Science, Queensland, Australia.
[25] Titus, B. M., Daly, M., & Exton, D. A. (2015). Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras. PLoS ONE, 10(3), 119645. doi:10.1371/journal.pone.0119645.
[26] Triki, Z., Wismer, S., Levorato, E., & Bshary, R. (2018). A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24(1), 481–489. doi:10.1111/gcb.13943.
[27] Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., & Bshary, R. (2014). Variation in Cleaner Wrasse Cooperation and Cognition: Influence of the Developmental Environment? Ethology, 120(6), 519–531. doi:10.1111/eth.12223.
[28] Allen, G. R. (1991). Damselfishes of the world. Mergus, Addis Ababa, Ethiopia.
[29] Lieske, E., & Myers, R. (2001). Reef Fishes of the World: Indo Pacific and Caribbean. Periplus, Singapore.
[30] Durville, P., Chabanet, P., & Quod, J. (2004). Visual Census of the Reef Fishes in the Natural Reserve of the Glorieuses Islands (Western Indian Ocean). Western Indian Ocean Journal of Marine Science, 2(2), 95–104. doi:10.4314/wiojms.v2i2.28435.
[31] Froese, R. and D. Pauly. 2015. Welcome to FishBase. In: Froese, R. and D. Pauly. Editors. 2015. FishBase. World Wide Web electronic publication. Version (10/2015). Available online: http://www.fishbase.org/manual/English/PDF/Welcome_to_ FishBase_RFroese_etal2015.pdf. (accessed on May 2022)
[32] Randall J. E. (2005) Reef and Shore Fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawaii Press, Honolulu, United States.
[33] Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences, 32(9), 1259–1269. doi:10.1016/j.cageo.2005.11.009.
[34] Krippendorff, K. (2009). Mathematical theory of communication. Departmental Papers (ASC), University of Pennsylvania, Pennsylvania, United States.
[35] Pielou, E. C. (1966). Shannon's Formula as a Measure of Specific Diversity: Its Use and Misuse. The American Naturalist, 100(914), 463–465. doi:10.1086/282439.
[36] Claudet, J., Pelletier, D., Jouvenel, J. Y., Bachet, F., & Galzin, R. (2006). Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biological Conservation, 130(3), 349–369. doi:10.1016/j.biocon.2005.12.030.
[37] Wilson, S. K., Graham, N. A. J., & Polunin, N. V. C. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 151(3), 1069–1076. doi:10.1007/s00227-006-0538-3.
[38] Polidoro, B., & Carpenter, K. (2013). Dynamics of coral reef recovery. Science, 340(6128), 34–35. doi:10.1126/science.1236833.
[39] Marimuthu, N., Jerald Wilson, J., Vinithkumar, N. V., & Kirubagaran, R. (2013). Coral reef recovery status in south Andaman Islands after the bleaching event 2010. Journal of Ocean University of China, 12(1), 91–96. doi:10.1007/s11802-013-2014-2.
[40] Morri, C., Montefalcone, M., Lasagna, R., Gatti, G., Rovere, A., Parravicini, V., Baldelli, G., Colantoni, P., & Bianchi, C. N. (2015). Through bleaching and tsunami: Coral reef recovery in the Maldives. Marine Pollution Bulletin, 98(1–2), 188–200. doi:10.1016/j.marpolbul.2015.06.050.
[41] Houk, P., Musburger, C., & Wiles, P. (2010). Water quality and herbivory interactively drive coral-reef recovery patterns in american samoa. PLoS ONE, 5(11), 13913. doi:10.1371/journal.pone.0013913.
[42] Lukoschek, V., Cross, P., Torda, G., Zimmerman, R., & Willis, B. L. (2013). The Importance of Coral Larval Recruitment for the Recovery of Reefs Impacted by Cyclone Yasi in the Central Great Barrier Reef. PLoS ONE, 8(6), 65363. doi:10.1371/journal.pone.0065363.
[43] Giglio, V. J., Luiz, O. J., & Ferreira, C. E. L. (2020). Ecological impacts and management strategies for recreational diving: A review. Journal of Environmental Management, 256, 109949. doi:10.1016/j.jenvman.2019.109949.
[44] Frid, A., & Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Ecology and Society, 6(1), 11. doi:10.5751/es-00404-060111.
[45] Gaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. (2018). The influence of human disturbance on wildlife nocturnality. Science, 360(6394), 1232–1235. doi:10.1126/science.aar7121.
[46] Gill, J. A., Norris, K., & Sutherland, W. J. (2001). Why behavioural responses may not reflect the population consequences of human disturbance. Biological Conservation, 97(2), 265–268. doi:10.1016/S0006-3207(00)00002-1.
[47] Albuquerque, T., Loiola, M., Nunes, J. de A. C. C., Reis-Filho, J. A., Sampaio, C. L. S., & Leduc, A. O. H. C. (2015). In situ effects of human disturbances on coral reef-fish assemblage structure: temporary and persisting changes are reflected as a result of intensive tourism. Marine and Freshwater Research, 66(1), 23. doi:10.1071/mf13185.
[48] Blowes, S. A., Chase, J. M., Di Franco, A., Frid, O., Gotelli, N. J., Guidetti, P., Knight, T. M., May, F., McGlinn, D. J., Micheli, F., Sala, E., & Belmaker, J. (2020). Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 57(3), 578–589. doi:10.1111/1365-2664.13549.
[49] Coll, M. (2020). Environmental effects of the COVID-19 pandemic from a (marine) ecological perspective. Ethics in Science and Environmental politics, 20, 41-55. doi:10.3354/esep00192.
[50] Silva-Rodríguez, E. A., Gálvez, N., Swan, G. J., Cusack, J. J., & Moreira-Arce, D. (2021). Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Science of the Total Environment, 765, 142713. doi:10.1016/j.scitotenv.2020.142713.
[51] Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C., & McClanahan, T. R. (2008). Effects of climate-induced coral bleaching on coral-reef fishes-ecological and economic consequences. Oceanography and Marine Biology, 46, 251–296. doi:10.1201/9781420065756.ch6.
[52] Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A., Cakacaka, A., Polunin, N. V. C., & Rushton, S. P. (2008). Exploitation and habitat degradation as agents of change within coral reef fish communities. Global Change Biology, 14(12), 2796–2809. doi:10.1111/j.1365-2486.2008.01696.x.
[53] Allen, G. (1999). Marine Fishes of South-East Asia: A field guide for anglers and divers. Periplus, North Clarendon, United States.
[54] Forrester, G. E. (1990). Factors influencing the juvenile demography of a coral reef fish. Ecology, 71(5), 1666–1681. doi:10.2307/1937576.
[55] Prabowo, B., Fahlevy, K., Putra, N. F. D., Rizqydiani, M., Rahman, B. M. K., Habibie, A., Subhan, B., & Madduppa, H. (2019). Trophic structure of reef fishes and relationship of corallivore fishes with hard coral in Kepulauan Seribu, Jakarta. IOP Conference Series: Earth and Environmental Science, 278(1), 12059. doi:10.1088/1755-1315/278/1/012059.
[56] Burkepile, D. E., & Hay, M. E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences, 105(42), 16201–16206. doi:10.1073/pnas.0801946105.
[57] Chimienti, G., De Padova, D., Adamo, M., Mossa, M., Bottalico, A., Lisco, A., ... & Mastrototaro, F. (2021). Effects of global warming on Mediterranean coral forests. Scientific reports, 11(1), 1-14. doi:10.1038/s41598-021-00162-4.
[58] Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104–113. doi:10.1016/j.marpol.2017.05.014.
[59] Fabricius, C., Folke, C., Cundill, G., & Schultz, L. (2007). Powerless spectators, coping actors, and adaptive co-managers: A synthesis of the role of communities in ecosystem management. Ecology and Society, 12(1), 29. doi:10.5751/ES-02072-120129.
[60] Cramer, K. L., O'Dea, A., Clark, T. R., Zhao, J. X., & Norris, R. D. (2017). Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nature Communications, 8, 14160. doi:10.1038/ncomms14160.
[61] Patterson, J., Wilhelmsson, D., & Edward, J. K. P. (2016). Co-management: partnerships for achieving effective resource outcomes on coral reefs–partnerships with and among communities and stakeholders. Proceedings of the 13th International Coral reef symposium, Honolulu, United States.
[62] Bruggemann, J. H., Kuyper, M. W. M., & Breeman, A. M. (1994). Comparative analysis of foraging and habitat use by the sympatric Caribbean parrotfish Scarus vetula and Sparisoma viride (Scaridae). Marine Ecology Progress Series, 112(1–2), 51–66. doi:10.3354/meps112051.
[63] Burkepile, D. E., & Hay, M. E. (2011). Feeding complementarity versus redundancy among herbivorous fishes on a Caribbean reef. Coral Reefs, 30(2), 351–362. doi:10.1007/s00338-011-0726-6.
[64] Lewis, S. M., & Wainwright, P. C. (1985). Herbivore abundance and grazing intensity on a Caribbean coral reef. Journal of Experimental Marine Biology and Ecology, 87(3), 215–228. doi:10.1016/0022-0981(85)90206-0.
[65] McAfee, S. T., & Morgan, S. G. (1996). Resource use by five sympatric parrotfishes in the San Blas Archipelago, Panama. Marine Biology, 125(3), 427–437. doi:10.1007/bf00353255.
[66] Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., ... & Glazier, E. W. (2016). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Regional Environmental Change, 16(2), 301-313. doi:10.1007/s10113-013-0572-x.
[67] Vardi, T., Hoot, W. C., Levy, J., Shaver, E., Winters, R. S., Banaszak, A. T., ... & Montoya"Maya, P. H. (2021). Six priorities to advance the science and practice of coral reef restoration worldwide. Restoration Ecology, 29(8), e13498. doi:10.1111/rec.13498.
[68] Lecchini, D., Brooker, R. M., Waqalevu, V., Gairin, E., Minier, L., Berthe, C., Besineau, R., Blay, G., Maueau, T., Sturny, V., Bambridge, T., Sang, G. T., & Bertucci, F. (2021). Effects of COVID-19 pandemic restrictions on coral reef fishes at eco-tourism sites in Bora-Bora, French Polynesia. Marine Environmental Research, 170, 105451.doi:10.1016/j.marenvres.2021.105451.
[69] Medeiros, P. R., Grempel, R. G., Souza, A. T., Ilarri, M. I., & Sampaio, C. L. S. (2007). Effects of recreational activities on the fish assemblage structure in a northeastern Brazilian reef. Pan-American Journal of Aquatic Sciences, 2(3), 288-300.
[70] Tripathy, S. K. (2020). Significance of traditional and advanced morphometry to fishery science. Journal of Human, Earth, and Future, 1(3), 153-166. doi:10.28991/HEF-2020-01-03-05.
[71] Brunnschweiler, J. M., & Barnett, A. (2013). Opportunistic Visitors: Long-Term Behavioural Response of Bull Sharks to Food Provisioning in Fiji. PLoS ONE, 8(3), 58522. doi:10.1371/journal.pone.0058522.
[72] Brunnschweiler, J. M., Abrantes, K. G., & Barnett, A. (2014). Long-term changes in species composition and relative abundances of sharks at a provisioning site. PLoS ONE, 9(1), 86682. doi:10.1371/journal.pone.0086682.
[73] Giglio, S., Maggiori, M., & Stroebel, J. (2015). Very long-run discount rates. Quarterly Journal of Economics, 130(1), 1–53. doi:10.1093/qje/qju036.
[74] Prinz, W. A., Toulmay, A., & Balla, T. (2020). The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, 21(1), 7–24. doi:10.1038/s41580-019-0180-9.
[75] Semeniuk, C. A. D., Haider, W., Cooper, A., & Rothley, K. D. (2010). A linked model of animal ecology and human behavior for the management of wildlife tourism. Ecological Modelling, 221(22), 2699–2713. doi:10.1016/j.ecolmodel.2010.07.018.
[76] Hémery, G., & McClanahan, T. R. (2007). Effect of Recreational Fish Feeding on Reef Fish Community Composition and Behaviour. Western Indian Ocean Journal of Marine Science, 4(2), 123–134. doi:10.4314/wiojms.v4i2.28482.
[77] Satapoomin, U., & Chansang, H. (2002). Structure of Reef Fish Communities of Phuket Island, the Andaman Sea. Phuket Marine Biological Center Research Bulletin (Thailand), 64, 25–52.
[78] Vardi, R., Berger-Tal, O., & Roll, U. (2021). iNaturalist insights illuminate COVID-19 effects on large mammals in urban centers. Biological Conservation, 254, 108953. doi:10.1016/j.biocon.2021.108953.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
