Properties of Fly Ash-Slag-Based Geopolymer Concrete with Low Molarity Sodium Hydroxide
Abstract
Doi: 10.28991/CEJ-2023-09-02-010
Full Text: PDF
Keywords
References
Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001.
Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023.
Lloyd, N., & Rangan, V. (2009). Geopolymer Concrete - Sustainable Cementless Concrete. (2009). SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues. doi:10.14359/51663200.
Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. doi:10.1016/j.ceramint.2015.10.084.
Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal (Iran), 8(3), 454–471. doi:10.28991/CEJ-2022-08-03-04.
Davidovits, J. (2013). Geopolymer cement. A review. Technical Papers, 21, 1-11, Geopolymer Institute Library, Saint-Quentin, France.
Batuecas, E., Ramón-Álvarez, I., Sánchez-Delgado, S., & Torres-Carrasco, M. (2021). Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production, 319, 319. doi:10.1016/j.jclepro.2021.128653.
Zannerni, G. M., Fattah, K. P., & Al-Tamimi, A. K. (2020). Ambient-cured geopolymer concrete with single alkali activator. Sustainable Materials and Technologies, 23, 23 00131. doi:10.1016/j.susmat.2019.e00131.
Upadhyay, H., Mungule, M., & K. R. Iyer, K. (2022). Issues and challenges for development of geopolymer concrete. Materials Today: Proceedings, 65, 1567–1574. doi:10.1016/j.matpr.2022.04.520.
Davidovits, J. (2020). Geopolymer Chemistry and Applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.
Alexander, A. E., & Shashikala, A. P. (2022). Studies on the microstructure and durability characteristics of ambient cured FA-GGBS based geopolymer mortar. Construction and Building Materials, 347, 347 128538. doi:10.1016/j.conbuildmat.2022.128538.
Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. doi:10.1016/j.conbuildmat.2014.12.065.
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.
Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183–198. doi:10.1016/j.conbuildmat.2016.09.136.
Krishna Rao, A., & Rupesh Kumar, D. (2020). Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Materials Today: Proceedings, 27, 1768–1773. doi:10.1016/j.matpr.2020.03.682.
Lee, W. H., Wang, J. H., Ding, Y. C., & Cheng, T. W. (2019). A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Construction and Building Materials, 211, 807–813. doi:10.1016/j.conbuildmat.2019.03.291.
Rafeet, A., Vinai, R., Soutsos, M., & Sha, W. (2019). Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research, 122, 118–135. doi:10.1016/j.cemconres.2019.05.003.
Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.
Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. doi:10.1016/j.conbuildmat.2018.07.111.
Yousefi Oderji, S., Chen, B., Ahmad, M. R., & Shah, S. F. A. (2019). Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10. doi:10.1016/j.jclepro.2019.03.290.
Junaid, M. T., Kayali, O., Khennane, A., & Black, J. (2015). A mix design procedure for low calcium alkali activated fly ash-based concretes. Construction and Building Materials, 79, 301–310. doi:10.1016/j.conbuildmat.2015.01.048.
Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151. doi:10.1016/j.conbuildmat.2019.07.211.
Prusty, S. R., Panigrahi, R., & Jena, S. (2022). Mechanical and micro-structural properties of blended fly Ash-slag based alkali activated concrete. Materials Today: Proceedings, 65, 1748–1754. doi:10.1016/j.matpr.2022.04.795.
Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424–431. doi:10.1016/j.conbuildmat.2017.02.131.
Lee, N. K., & Lee, H. K. (2016). Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 72, 168–179. doi:10.1016/j.cemconcomp.2016.06.004.
Bellum, R. R., Muniraj, K., Indukuri, C. S. R., & Madduru, S. R. C. (2020). Investigation on Performance Enhancement of Fly ash-GGBFS Based Graphene Geopolymer Concrete. Journal of Building Engineering, 32, 32 101659. doi:10.1016/j.jobe.2020.101659.
Provis, J. L., Myers, R. J., White, C. E., Rose, V., & Van Deventer, J. S. J. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42(6), 855–864. doi:10.1016/j.cemconres.2012.03.004.
Ibrahim, W. M. W., Abdullah, M. M. A. B., Ahmad, R., Sandu, A. V., Vizureanu, P., Benjeddou, O., Rahim, A., Ibrahim, M., & Sauffi, A. S. (2022). Chemical Distributions of Different Sodium Hydroxide Molarities on Fly Ash/Dolomite-Based Geopolymer. Materials, 15(17). doi:10.3390/ma15176163.
Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. M. Y., & Dawood Abdul Khadar, S. (2022). Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Studies in Construction Materials, 16, e01014. doi:10.1016/j.cscm.2022.e01014.
Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2018). A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 16(1), 53–63. doi:10.1080/14488353.2018.1450716.
Nagajothi, S., & Elavenil, S. (2021). Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon, 13(2), 507–516. doi:10.1007/s12633-020-00470-w.
El-Hassan, H., & Ismail, N. (2018). Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. Journal of Sustainable Cement-Based Materials, 7(2), 122–140. doi:10.1080/21650373.2017.1411296.
Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 257 1–10. doi:10.1016/j.conbuildmat.2020.119548.
Habert, G., D’Espinose De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012.
McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.
SNI 7656:2012. (2012). Mixture Selection Procedures for Normal Concrete, Heavy Concrete and Mass Concrete. Badan Standarisasi Nasional, Jakarta, Indonesia (2012). (In Indonesian).
ACI 211.1-91. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Michigan, United States.
ASTM C192/C192M-02. (2017). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-02.
ASTM C143/C143M-15a. (2020). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-15A.
ASTM C642-97. (2017). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-97.
ASTM C39/C39M-01. (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-01.
Bernal, S. A., Provis, J. L., Rose, V., & Mejía De Gutierrez, R. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 33(1), 46–54. doi:10.1016/j.cemconcomp.2010.09.004.
Şahmaran, M., Keskin, S. B., Ozerkan, G., & Yaman, I. O. (2008). Self-healing of mechanically-loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872–879. doi:10.1016/j.cemconcomp.2008.07.001.
Alanazi, H., Hu, J., & Kim, Y. R. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747–756. doi:10.1016/j.conbuildmat.2018.11.172.
Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476–487. doi:10.1016/j.conbuildmat.2018.04.008.
Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39. doi:10.1016/j.matdes.2014.05.001.
Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2007). Fly ash-based geopolymer concrete: Study of slender reinforced columns. Journal of Materials Science, 42(9), 3124–3130. doi:10.1007/s10853-006-0523-8.
Ruiz-Santaquiteria, C., Skibsted, J., Fernández-Jiménez, A., & Palomo, A. (2012). Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cement and Concrete Research, 42(9), 1242–1251. doi:10.1016/j.cemconres.2012.05.019.
DOI: 10.28991/CEJ-2023-09-02-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ernawati Sri Sunarsih, Sholihin As'ad, Abdul Rahman Mohd. Sam, Stefanus Adi Kristiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.