Properties of Fly Ash-Slag-Based Geopolymer Concrete with Low Molarity Sodium Hydroxide

Ernawati Sri Sunarsih, Sholihin As'ad, Abdul Rahman Mohd Sam, Stefanus Adi Kristiawan


Most geopolymer concrete is produced using low-calcium fly ash and cured at high drying temperatures. Additionally, the activator is prepared with a sodium hydroxide (SH) solution of high molarity. This research proposes using a low molarity SH solution to produce fly ash-slag-based geopolymer concrete cured at room temperature. The properties to be investigated include workability, water absorption, and compressive strength. The influence of mixture composition, i.e., slag content, sodium silicate to sodium hydroxide (SS/SH) ratio, and alkaline activator to binder (Al/Bi) ratio on those properties is of interest. The slag substituted fly ash at 10, 20, 30, 40, and 50% replacement levels. The SS/SH ratio is 1.0, 1.5, and 2.0, with the SH molarity determined at 2M. The Al/Bi ratio is 0.40, 0.45, and 0.50. The results show that a higher percentage of slag reduces slump and water absorption but increases the compressive strength of the geopolymer concrete. The mixtures suitable for use are at the percentages of slag 20, 30, and 40%. An increase in the SS/SH ratio decreases the slump and water absorption. Geopolymer concrete with an SS/SH ratio of 1.5 gives maximum compressive strength compared to the other ratios. Increasing the ratio of Al/Bi increases the workability of geopolymer concrete. At an Al/Bi ratio of 0.45, the compressive strength is maximum and the water absorption is minimum. The recommended mix design in terms of workability, water absorption, and compressive strength of geopolymer concrete is a mixture with slag contents of 20, 30, and 40%, a SS/SH ratio of 1.0 and 1.5, and an Al/Bi ratio of 0.45 and 0.50.


Doi: 10.28991/CEJ-2023-09-02-010

Full Text: PDF


Low Molarity Sodium Hydroxide; Workability; Water Absorption; Compressive Strength; Slag; Geopolymer Concrete.


Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001.

Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023.

Lloyd, N., & Rangan, V. (2009). Geopolymer Concrete - Sustainable Cementless Concrete. (2009). SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues. doi:10.14359/51663200.

Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. doi:10.1016/j.ceramint.2015.10.084.

Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal (Iran), 8(3), 454–471. doi:10.28991/CEJ-2022-08-03-04.

Davidovits, J. (2013). Geopolymer cement. A review. Technical Papers, 21, 1-11, Geopolymer Institute Library, Saint-Quentin, France.

Batuecas, E., Ramón-Álvarez, I., Sánchez-Delgado, S., & Torres-Carrasco, M. (2021). Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production, 319, 319. doi:10.1016/j.jclepro.2021.128653.

Zannerni, G. M., Fattah, K. P., & Al-Tamimi, A. K. (2020). Ambient-cured geopolymer concrete with single alkali activator. Sustainable Materials and Technologies, 23, 23 00131. doi:10.1016/j.susmat.2019.e00131.

Upadhyay, H., Mungule, M., & K. R. Iyer, K. (2022). Issues and challenges for development of geopolymer concrete. Materials Today: Proceedings, 65, 1567–1574. doi:10.1016/j.matpr.2022.04.520.

Davidovits, J. (2020). Geopolymer Chemistry and Applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.

Alexander, A. E., & Shashikala, A. P. (2022). Studies on the microstructure and durability characteristics of ambient cured FA-GGBS based geopolymer mortar. Construction and Building Materials, 347, 347 128538. doi:10.1016/j.conbuildmat.2022.128538.

Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. doi:10.1016/j.conbuildmat.2014.12.065.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.

Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183–198. doi:10.1016/j.conbuildmat.2016.09.136.

Krishna Rao, A., & Rupesh Kumar, D. (2020). Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Materials Today: Proceedings, 27, 1768–1773. doi:10.1016/j.matpr.2020.03.682.

Lee, W. H., Wang, J. H., Ding, Y. C., & Cheng, T. W. (2019). A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Construction and Building Materials, 211, 807–813. doi:10.1016/j.conbuildmat.2019.03.291.

Rafeet, A., Vinai, R., Soutsos, M., & Sha, W. (2019). Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research, 122, 118–135. doi:10.1016/j.cemconres.2019.05.003.

Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.

Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. doi:10.1016/j.conbuildmat.2018.07.111.

Yousefi Oderji, S., Chen, B., Ahmad, M. R., & Shah, S. F. A. (2019). Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10. doi:10.1016/j.jclepro.2019.03.290.

Junaid, M. T., Kayali, O., Khennane, A., & Black, J. (2015). A mix design procedure for low calcium alkali activated fly ash-based concretes. Construction and Building Materials, 79, 301–310. doi:10.1016/j.conbuildmat.2015.01.048.

Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151. doi:10.1016/j.conbuildmat.2019.07.211.

Prusty, S. R., Panigrahi, R., & Jena, S. (2022). Mechanical and micro-structural properties of blended fly Ash-slag based alkali activated concrete. Materials Today: Proceedings, 65, 1748–1754. doi:10.1016/j.matpr.2022.04.795.

Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424–431. doi:10.1016/j.conbuildmat.2017.02.131.

Lee, N. K., & Lee, H. K. (2016). Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 72, 168–179. doi:10.1016/j.cemconcomp.2016.06.004.

Bellum, R. R., Muniraj, K., Indukuri, C. S. R., & Madduru, S. R. C. (2020). Investigation on Performance Enhancement of Fly ash-GGBFS Based Graphene Geopolymer Concrete. Journal of Building Engineering, 32, 32 101659. doi:10.1016/j.jobe.2020.101659.

Provis, J. L., Myers, R. J., White, C. E., Rose, V., & Van Deventer, J. S. J. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42(6), 855–864. doi:10.1016/j.cemconres.2012.03.004.

Ibrahim, W. M. W., Abdullah, M. M. A. B., Ahmad, R., Sandu, A. V., Vizureanu, P., Benjeddou, O., Rahim, A., Ibrahim, M., & Sauffi, A. S. (2022). Chemical Distributions of Different Sodium Hydroxide Molarities on Fly Ash/Dolomite-Based Geopolymer. Materials, 15(17). doi:10.3390/ma15176163.

Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. M. Y., & Dawood Abdul Khadar, S. (2022). Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Studies in Construction Materials, 16, e01014. doi:10.1016/j.cscm.2022.e01014.

Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2018). A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 16(1), 53–63. doi:10.1080/14488353.2018.1450716.

Nagajothi, S., & Elavenil, S. (2021). Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon, 13(2), 507–516. doi:10.1007/s12633-020-00470-w.

El-Hassan, H., & Ismail, N. (2018). Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. Journal of Sustainable Cement-Based Materials, 7(2), 122–140. doi:10.1080/21650373.2017.1411296.

Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 257 1–10. doi:10.1016/j.conbuildmat.2020.119548.

Habert, G., D’Espinose De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012.

McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.

SNI 7656:2012. (2012). Mixture Selection Procedures for Normal Concrete, Heavy Concrete and Mass Concrete. Badan Standarisasi Nasional, Jakarta, Indonesia (2012). (In Indonesian).

ACI 211.1-91. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Michigan, United States.

ASTM C192/C192M-02. (2017). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-02.

ASTM C143/C143M-15a. (2020). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-15A.

ASTM C642-97. (2017). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-97.

ASTM C39/C39M-01. (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-01.

Bernal, S. A., Provis, J. L., Rose, V., & Mejía De Gutierrez, R. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 33(1), 46–54. doi:10.1016/j.cemconcomp.2010.09.004.

Şahmaran, M., Keskin, S. B., Ozerkan, G., & Yaman, I. O. (2008). Self-healing of mechanically-loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872–879. doi:10.1016/j.cemconcomp.2008.07.001.

Alanazi, H., Hu, J., & Kim, Y. R. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747–756. doi:10.1016/j.conbuildmat.2018.11.172.

Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476–487. doi:10.1016/j.conbuildmat.2018.04.008.

Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39. doi:10.1016/j.matdes.2014.05.001.

Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2007). Fly ash-based geopolymer concrete: Study of slender reinforced columns. Journal of Materials Science, 42(9), 3124–3130. doi:10.1007/s10853-006-0523-8.

Ruiz-Santaquiteria, C., Skibsted, J., Fernández-Jiménez, A., & Palomo, A. (2012). Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cement and Concrete Research, 42(9), 1242–1251. doi:10.1016/j.cemconres.2012.05.019.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-010


  • There are currently no refbacks.

Copyright (c) 2023 Ernawati Sri Sunarsih, Sholihin As'ad, Abdul Rahman Mohd. Sam, Stefanus Adi Kristiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.