Experimental Studies on Some Clays Leading to Instability

Boubakeur Ykhlef, Abdelghani Belouar, Azdine Boulfoul


The landslide problem in the city of Constantine (Algeria) is mostly due to clayey soil, which is covering the whole area. Therefore, all the structures and foundations built over such soil are quite vulnerable. The sensitivity of this soil increases during the rainfall season, which might reach an extreme magnitude and cause damage to the structures. To understand some aspects of the failure of the mentioned soil and its mechanism, a large campaign of geotechnical characterization was undertaken using samples from the area. The specific gravity, Atterberg limits, and coefficient of lateral earth pressure at rest were determined. Samples were tested in triaxial stress path cells over a range of stresses, with the test being either stress- or strain-controlled, leading to sliding phenomena under different stress levels. The clays can be classified as over-consolidated soils. The test program and the characterization study indicated that Kois directly related to the stress history of the soil and also dependent upon the state of the sample before the test (i.e., undisturbed or disturbed). The clay minerals in the Mio-Pliocene landslide zones in Constantine are mostly montmorillonite and kaolinite, which have the lowest frictional resistance. As the montmorillonite content increases, the angle of internal friction decreases. The present study focuses on the critical state analysis since all the behavior problems of these tested samples show a peak shear strength, which is characteristic of over-consolidation materials that could lead to instability in this area.


Doi: 10.28991/CEJ-2023-09-02-012

Full Text: PDF


Constantine (Algeria); Triaxial Tests; Clay Soil; Landslide; Critical State Model.


DeGroot, D. J. (2003). Laboratory Measurement and Interpretation of Soft Clay Mechanical Behavior. Soil Behavior and Soft Ground Construction. Symposium on Soil Behavior and Soft Ground Construction Honoring Charles C. "Chuck" Ladd, 167-200. doi:10.1061/40659(2003)6.

Benaissa, A., Cordary, D., & Gioraud, A. (1989). Les mouvements de terrain dans la zone urbaine de Constantine (Algérie). Bulletin of the International Association of Engineering Geology, 40(1), 85–90. doi:10.1007/bf02590344.

Belouar, A., Boulfoul, A., & Seridi, A. Determination des caracteristiques geotechniques d’une zone potentiellement instable–Cas de Boussouf, Constantine”. Sciences & Technologie. B, Sciences de l’ingénieur, 114-121. (In French).

Lafifi, B., Darve, F., Nouaouria, M. S., & Guenfoud, M. (2008). Application du critère de hill dans la modélisation par éléments finis des glissements de terrain de la région de Constantine (Algérie). European Journal of Environmental and Civil Engineering, 12(6), 747–769. doi:10.1080/19648189.2008.9693042.

Ykhlef, B., Belouar, A., & Boubidi, S. (2014). Plan for Prevention of Natural Hazards in Urban Areas. Case of the City of Constantine (Algeria). MATEC Web of Conferences, 11, 03008. doi:10.1051/matecconf/20141103008.

Lin, Q., Steger, S., Pittore, M., Zhang, J., Wang, L., Jiang, T., & Wang, Y. (2022). Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Science of the total environment, 850, 158049. doi:10.1016/j.scitotenv.2022.158049.

Paulsen, S., Krauter, E., & Hanisch, J. (1999). Expert report on landslides in the city of Constantine (Algeria). Federal Institute for Geosciences and Natural Resources Hannover (FRG), Narch, 117989. (In French).

Khemissa, M. (2016). Validity Criteria of Oedometric and Triaxial Test Results. Geotechnical and Geological Engineering, 34(4), 1171–1180. doi:10.1007/s10706-016-0036-4.

DeGroot, D.J., E. Landon, M., & E. Poirier, S. (2019). Geology and engineering properties of sensitive Boston Blue Clay at Newbury, Massachusetts. AIMS Geosciences, 5(3), 412–447. doi:10.3934/geosci.2019.3.412.

Gasparre, A., Nishimura, S., Coop, M. R., & Jardine, R. J. (2007). The influence of structure on the behaviour of London Clay. Geotechnique, 57(1), 19–31. doi:10.1680/geot.2007.57.1.19.

Skempton, A. W. (1969). The consolidation of clays by gravitational compaction. Quarterly Journal of the Geological Society of London, 125(1–4), 373–408. doi:10.1144/gsjgs.125.1.0373.

Kézdi, Á., & Rétháti, L. (1988). Handbook of soil mechanics, Soil mechanics of earthworks, foundations, and highway engineering. Elsevier Science, Amsterdam. doi:10.1016/C2009-0-15474-0.

Atkinson, J. (1993). An introduction to the mechanics of soils and foundations: through critical state soil mechanics. McGraw-Hill Book, London, United Kingdom.

Scott, C. R. (1994). An Introduction to Soil Mechanics and Foundations. Springer Science Business, Dordrecht, Netherlands. doi:10.1007/978-1-4899-7250-7.

Terzaghi, A. (1996). Soil management for improvement of soil physical characteristics related to erosion in Uruguay. Wageningen University and Research, Wageningen, Netherlands.

Jamiolkowski, M., Ladd, C. C., Germaine, J. T., & Lancellotta, R. (1985). New developments in field and laboratory testing of soils. 11th International Conference on Soil Mechanics and Foundation Engineering, 12-16 August, 1985, San Francisco, United States.

Cheng, T., Zhang, Y., & Yan, K. (2018). Experimental Study of Silty Clay Plane Strain Tri-axial Test under RTC Path and Modified Cam-clay Model. Civil Engineering Journal, 4(3), 518. doi:10.28991/cej-0309112.

Skempton, A. W. (1984). Horizontal Stresses in an Over-Consolidated Eocene Clay. Selected Papers on Soil Mechanics, 119, 119–125. doi:10.1680/sposm.02050.0015.

Dai, M., Li, X., Gao, Z., & Li, M. (2022). Post-cyclic undrained shear behavior of soft marine clay under anisotropic consolidation stress paths. Marine Georesources & Geotechnology, 40(7), 882-894. doi:10.1080/1064119X.2021.1953649.

Athmania, D., Benaissa, A., & Bouassida, M. (2009). Mineralogical properties of swelling clays of the wilaya of Mila. Colloque international Sol Non Saturés et Environnement. Tlemcen-Algérie-27 et, 425-435. (In French).

Xu, S., Lu, H., Liu, J., & Li, J. (2019). An experimental study on the microstructure and triaxial shear of structured clay in contact with landfill leachate. Bulletin of Engineering Geology and the Environment, 78(6), 4611–4622. doi:10.1007/s10064-018-1409-0.

Stevenson, C. M., & Gurnick, M. (2016). Structural collapse in kaolinite, montmorilonite and illite clay and its role in the ceramic rehydroxylation dating of low-fired earthenware. Journal of Archaeological Science, 69, 54–63. doi:10.1016/j.jas.2016.03.004.

Ducasse, E., Adeline, K., Briottet, X., Hohmann, A., Bourguignon, A., & Grandjean, G. (2020). Montmorillonite estimation in clay-quartz-calcite samples from laboratory SWIR imaging spectroscopy: A comparative study of spectral preprocessing and unmixing methods. Remote Sensing, 12(11). doi:10.3390/rs12111723.

Jelinek, R., Omura, H., Morita, K., Nagasawa, T., & Kubota, T. (2002). Mechanical properties and behaviour of soils under the triaxial test, the Yamauchi landslide, Japan. Bulletin of Engineering Geology and the Environment, 61(3), 207–212. doi:10.1007/s10064-002-0159-0.

Ozbay, A., & Cabalar, A. F. (2016). Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material. Granular Matter, 18(3), 1–9. doi:10.1007/s10035-016-0664-7.

Bjerrum, L. (1954). Theoretical and experimental investigations on the shear strength of soils. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.

Zhu, E., & Wang, S. (2019). Modeling Confined Compression on Structured Soils. IOP Conference Series: Earth and Environmental Science, 371(2), 22091. doi:10.1088/1755-1315/371/2/022091.

Silva, I. N., Indraratna, B., Nguyen, T. T., & Rujikiatkamjorn, C. (2022). Shear behaviour of subgrade soil with reference to varying initial shear stress and plasticity index. Acta Geotechnica, 17(9), 4207–4216. doi:10.1007/s11440-022-01477-w.

Brooker, E. W., & Ireland, H. O. (1965). Earth Pressures at Rest Related to Stress History. Canadian Geotechnical Journal, 2(1), 1–15. doi:10.1139/t65-001.

Chandler, R. J., & Nicholls, R. A. (1973). Discussion: Lias clay: Weathering processes and their effect on shear strength. Geotechnique, 23(1), 131–133. doi:10.1680/geot.1973.23.1.131.

Yin, Z. Y., Xu, Q., & Hicher, P. Y. (2013). A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotechnica, 8(5), 509–523. doi:10.1007/s11440-013-0206-y.

Hamidi, A., Tourchi, S., & Khazaei, C. (2015). Thermomechanical Constitutive Model for Saturated Clays Based on Critical State Theory. International Journal of Geomechanics, 15(1), 4014038. doi:10.1061/(asce)gm.1943-5622.0000402.

Rampello, S., Viggiani, G. M. B., & Amorosi, A. (1997). Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths. Geotechnique, 47(3), 475–489. doi:10.1680/geot.1997.47.3.475.

Carey, J. M., & Petley, D. N. (2014). Progressive shear-surface development in cohesive materials; implications for landslide behaviour. Engineering Geology, 177, 54–65. doi:10.1016/j.enggeo.2014.05.009.

Yin, J., Zhang, K., Geng, W., Gaamom, A., & Xiao, J. (2021). Effect of initial water content on undrained shear strength of K0 consolidated clay. Soils and Foundations, 61(5), 1453–1463. doi:10.1016/j.sandf.2021.08.010.

Abdelhamid, M. S., & Krizek, R. J. (1976). At-Rest Lateral Earth Pressure of Consolidating Clay. Journal of the Geotechnical Engineering Division, 102(7), 721–738. doi:10.1061/ajgeb6.0000295.

Mesri, G., & Hayat, T. M. (1993). The coefficient of earth pressure at rest. Canadian Geotechnical Journal, 30(4), 647–666. doi:10.1139/t93-056.

Qiu, Z., Wang, J., Chen, Y., Yang, Y., & Li, Y. (2020). Effects of periodic saturation on K0 for a sandstone-mudstone particle mixture. Marine Georesources & Geotechnology, 38(7), 867–875. doi:10.1080/1064119X.2019.1637486.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-012


  • There are currently no refbacks.

Copyright (c) 2023 BOUBAKEUR YKHLEF

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.