Neutralization of Acidity (pH) and Reduction of Total Suspended Solids (TSS) by Solar-Powered Electrocoagulation System

Elanda Fikri, Irfan A. Sulistiawan, Agus Riyanto, Aditiyana Eka Saputra


This study investigates the effect of electrocoagulation contact time on the pH and TSS of wastewater discharged from the wastewater treatment plant (WWTP) of the Psychiatric Hospital of West Java Province. The experiment followed the pretest-posttest control group design. This study involved testing 56 wastewater samples six times before and after treatment. Each treatment was repeated four times, and there was one control group for each repetition. The electrocoagulation tool used in this study consisted of six 1-mm electrode plates that were 8 cm apart, a current strength of 5A, a voltage of 12V, and a 50-Watt solar panel. The data were analyzed using descriptive and inferential statistics. The results showed that all electrocoagulation contact time treatments had a significant effect on increasing the pH and the TSS. Additionally, the electrocoagulation tool was found to be effective, stable, portable, and environmentally friendly, with a self-cleaning system that reduced operational costs and saved electricity through the use of solar panels. This study contributes to the development of an effective electrocoagulation toll for wastewater treatment and the determination of the optimal contact time for the tool, providing a practical solution to overcome the problems of pH and TSS in wastewater. These findings can be applied to other wastewater treatment plants, thus improving the quality of discharged wastewater.


Doi: 10.28991/CEJ-2023-09-05-09

Full Text: PDF


Wastewater; Electrocoagulation Contact Time; pH; TSS; Solar Panel.


Ministry of Health of the Republic of Indonesia. (2019). Regulation of the Minister of Health Number 7 concerning Hospital Environmental Health. Secretariat of the Cabinet of the Republic of Indonesia, Jakarta, Indonesia.

Said, N. I. (2018). Inexpensive and Efficient Hospital Wastewater Treatment Technology Package. Journal Air Indonesia, 2(1), 52-65. doi:10.29122/jai.v2i1.2289.

Arita, S., Agustina, T. E., Ilmi, N., Pranajaya, V. D. W., & Gayatri, R. (2022). Treatment of Laboratory Wastewater by Using Fenton Reagent and Combination of Coagulation-Adsorption as Pretreatment. Journal of Ecological Engineering, 23(8), 211–221. doi:10.12911/22998993/151074.

Chinedu, S., & Nwinyi, O. (2011). Assessment of water quality in Canaan land, Ota, Southwest Nigeria. Agriculture and Biology Journal of North America, 2(4), 577–583. doi:10.5251/abjna.2011.2.4.577.583.

Norby, J. (2000). The origin and the meaning of the little p in pH. Trends in Biochemical Sciences, 25(1), 36–37. doi:10.1016/s0968-0004(99)01517-0.

Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., & Dar, S.A. (2020). Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation and Biotechnology. Springer, Cham, Switzerland. doi:10.1007/978-3-030-35691-0_1.

Hassan, H. E., El-Khatib, S. I., & Mahmoud, M. M. (2020). Study some optical properties of different total suspended solids in media filters by using He–Ne laser. Journal of Optics (India), 49(2), 248–255. doi:10.1007/s12596-020-00613-7.

Selbig, W. R., & Bannerman, R. T. (2011). Ratios of Total Suspended Solids to Suspended Sediment Concentrations by Particle Size. Journal of Environmental Engineering, 137(11), 1075–1081. doi:10.1061/(asce)ee.1943-7870.0000414.

Wu, J. L., Ho, C. R., Huang, C. C., Srivastav, A. L., Tzeng, J. H., & Lin, Y. T. (2014). Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids. Sensors (Switzerland), 14(12), 22670–22688. doi:10.3390/s141222670.

Haryanti N. (2023). Self-monitoring Report of Hospital wastewater. Soul Prov. West Java Months January, February, March, Bandung, Psychiatric Hospital of West Java Province, Indonesia.

Ginting, P. (2002). Waste Treatment Technology, Sinar Harapan Library Publisher, Jakarta, Indonesia. (In Indonesian).

Vik, E. A., Carlson, D. A., Eikum, A. S., & Gjessing, E. T. (1984). Electrocoagulation of potable water. Water Research, 18(11), 1355–1360. doi:10.1016/0043-1354(84)90003-4.

Jose, S., Mishra, L., Debnath, S., Pal, S., Munda, P. K., & Basu, G. (2019). Improvement of water quality of remnant from chemical retting of coconut fibre through electrocoagulation and activated carbon treatment. Journal of Cleaner Production, 210, 630–637. doi:10.1016/j.jclepro.2018.11.011.

Holt, P. K. (2002). Electrocoagulation: unravelling and synthesizing the mechanisms behind a water treatment process. PhD Thesis, The University of Sydney, Camperdown, Australia.

Padmaja, K., Cherukuri, J., & Anji Reddy, M. (2020). A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. Journal of Water Process Engineering, 34, 101153. doi:10.1016/j.jwpe.2020.101153.

Liu, H., Zhao, X., & Qu, J. (2010). Electrocoagulation in water treatment. Electrochemistry for the Environment, 245–262. doi:10.1007/978-0-387-68318-8_10.

Barrera-Díaz, C., Bilyeu, B., Roa, G., & Bernal-Martinez, L. (2011). Physicochemical aspects of electrocoagulation. Separation and Purification Reviews, 40(1), 1–24. doi:10.1080/15422119.2011.542737.

Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154–169. doi:10.1016/j.coelec.2020.05.009.

Eissa, M. E., Rashed, E. R., & Eissa, D. E. (2022). Dendrogram analysis and statistical examination for total microbiological mesophilic aerobic count of municipal water distribution network system. HighTech and Innovation Journal, 3(1), 28-36. doi:10.28991/HIJ-2022-03-01-03.

Ni’am, M. F., Othman, F., Sohaili, J., & Fauzia, Z. (2007). Electrocoagulation technique in enhancing COD and suspended solids removal to improve wastewater quality. Water Science and Technology, 56(7), 47–53. doi:10.2166/wst.2007.678.

Amri, I., Pratiwi Destinefa, & Zultiniar. (2020). Processing of tofu liquid waste into clean water by continuous electrocoagulation method. Chempublish Journal, 5(1), 57–67. doi:10.22437/chp.v5i1.7651.

Kuratul, U., Ilim, & Simanjutak, W. (2012). Study of the Effect of Potential, Contact Time, and pH on Electrocoagulation Methods of Restaurant Liquid Waste Using Fe Electrodes with Monopolar and Dipolar Arrangements. Scientific Journal of Experimental Biology and Biodiversity (J-BEKH), 3(978), 445–450. (In Indonesian).

Bellebia, S., Kacha, S., Bouyakoub, A. Z., & Derriche, Z. (2012). Experimental investigation of chemical oxygen demand and turbidity removal from cardboard paper mill effluents using combined electrocoagulation and adsorption processes. Environmental Progress and Sustainable Energy, 31(3), 361–370. doi:10.1002/ep.10556.

Ahmadian, M., Yousefi, N., Van Ginkel, S. W., Zare, M. R., Rahimi, S., & Fatehizadeh, A. (2012). Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water Science and Technology, 66(4), 754–760. doi:10.2166/wst.2012.232.

Ghahremani, H., Bagheri, S., Hassani, S. M., & Khoshchehreh, M. R. (2012). Treatment of dairy industry wastewater using an electrocoagulation process. Advances in Environmental Biology, 6(7), 1897–1901.

Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S., & Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47–54. doi:10.1016/j.psep.2019.06.010.

Nidheesh, P. V., Scaria, J., Babu, D. S., & Kumar, M. S. (2021). An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere, 263, 127907. doi:10.1016/j.chemosphere.2020.127907.

Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Industrial and Engineering Chemistry Research, 55(16), 4363–4389. doi:10.1021/acs.iecr.5b04703.

Raju, G. B., Karuppiah, M. T., Latha, S. S., Parvathy, S., & Prabhakar, S. (2008). Treatment of wastewater from synthetic textile industry by electrocoagulation-electrooxidation. Chemical Engineering Journal, 144(1), 51–58. doi:10.1016/j.cej.2008.01.008.

Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminum and iron plate hybrid anodes. Ecological Engineering, 123, 65–73. doi:10.1016/j.ecoleng.2018.08.025.

Rookesh, T., Samaei, M. R., Yousefinejad, S., Hashemi, H., Derakhshan, Z., Abbasi, F., Jalili, M., Giannakis, S., & Bilal, M. (2022). Investigating the Electrocoagulation Treatment of Landfill Leachate by Iron/Graphite Electrodes: Process Parameters and Efficacy Assessment. Water (Switzerland), 14(2), 205. doi:10.3390/w14020205.

Kobya, M., Bayramoglu, M., & Eyvaz, M. (2007). Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of Hazardous Materials, 148(1–2), 311–318. doi:10.1016/j.jhazmat.2007.02.036.

Seltman, H. J. (2012). Experimental design and analysis. Available online: resources/Designed_Experiment.pdf (accessed on May 2023).

Rusdianasari, R., Hajar, I., & Ariyanti, I. (2019). Songket Industry Wastewater Processing Using Electrocoagulation Method. Logic: Jurnal Rancang Bangun Dan Teknologi, 19(1), 47. doi:10.31940/logic.v19i1.1297.

Holt, P., Barton, G., & Mitchell, C. (1999). Electrocoagulation as a wastewater treatment. The third annual Australian environmental engineering research event, 23-26 November, Castlemaine, Australia.

Barrera-Díaz, C. E., Balderas-Hernández, P., & Bilyeu, B. (2018). Electrocoagulation: Fundamentals and prospectives. Electrochemical Water and Wastewater Treatment, 61–76. doi:10.1016/B978-0-12-813160-2.00003-1.

Khalifa, O., Banat, F., Srinivasakannan, C., Radjenovic, J., & Hasan, S. W. (2020). Performance tests and removal mechanisms of aerated electrocoagulation in the treatment of oily wastewater. Journal of Water Process Engineering, 36, 101290. doi:10.1016/j.jwpe.2020.101290.

Rusdianasari, Taqwa, A., Jaksen, & Syakdani, A. (2017). Treatment optimization of electrocoagulation (EC) in purifying palm oil mill effluents (POMEs). Journal of Engineering and Technological Sciences, 49(5), 604–617. doi:10.5614/j.eng.technol.sci.2017.49.5.4.

Holt, P. K., Barton, G. W., Wark, M., & Mitchell, C. A. (2002). A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2–3), 233–248. doi:10.1016/S0927-7757(02)00285-6.

Vasudevan, S., Lakshmi, J., & Sozhan, G. (2011). Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2011.04.081.

Sayiner, G., Kandemirli, F., & Dimoglo, A. (2008). Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes. Desalination, 230(1–3), 205–212. doi:10.1016/j.desal.2007.10.020.

Fajardo, A. S., Rodrigues, R. F., Martins, R. C., Castro, L. M., & Quinta-Ferreira, R. M. (2015). Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 275, 331–341. doi:10.1016/j.cej.2015.03.116.

Hanum, F., Tambun, R., Ritonga, M. Y. & Kasim, W. W. (2015). Application of Electrocoagulation in Palm Oil Mill Liquid Waste Treatment. USU Chemical Engineering Journal, 4(4), 13–17. doi:10.32734/jtk.v4i4.1508. (In Indonesian).

Szpyrkowicz, L. (2005). Hydrodynamic effects on the performance of electro-coagulation/electro- flotation for the removal of dyes from textile wastewater. Industrial and Engineering Chemistry Research, 44(20), 7844–7853. doi:10.1021/ie0503702.

Emamjomeh, M. M., & Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation / flotation processes. Journal of Environmental Management, 90(5), 1663–1679. doi:10.1016/j.jenvman.2008.12.011.

Tan, C. H., MatJafri, M. Z., & Lim, H. S. (2011). Transmittance Optical Properties Investigation of Aluminum Ions Aqueous Solution. AIP Conference Proceedings. doi:10.1063/1.3573763.

Chezeau, B., Boudriche, L., Vial, C., & Boudjemaa, A. (2020). Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes. Separation Science and Technology (Philadelphia), 55(14), 2510–2527. doi:10.1080/01496395.2019.1638935.

Verma, S. K., Khandegar, V., & Saroha, A. K. (2013). Removal of Chromium from Electroplating Industry Effluent Using Electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2), 146–152. doi:10.1061/(asce)hz.2153-5515.0000170.

Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, 949–963. doi:10.1016/j.jenvman.2013.06.043.

Li, X., Song, J., Guo, J., Wang, Z., & Feng, Q. (2011). Landfill leachate treatment using electrocoagulation. Procedia Environmental Sciences, 10(PART B), 1159–1164. doi:10.1016/j.proenv.2011.09.185.

Nouri, J., Mahvi, A. H., & Bazrafshan, E. (2010). Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes. International Journal of Environmental Research, 4(2), 201–208.

Koyuncu, S., & Arıman, S. (2020). Domestic wastewater treatment by real-scale electrocoagulation process. Water Science and Technology, 81(4), 656–667. doi:10.2166/wst.2020.128.

Alam, P. N., Yulianis, Pasya, H. L., Aditya, R., Aslam, I. N., & Pontas, K. (2022). Acid mine wastewater treatment using electrocoagulation method. Materials Today: Proceedings, 63, S434–S437. doi:10.1016/j.matpr.2022.04.089.

Maha Lakshmi, P., & Sivashanmugam, P. (2013). Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal. Separation and Purification Technology, 116, 378–384. doi:10.1016/j.seppur.2013.05.026.

Tak, B. Yul, Tak, B. Sik, Kim, Y. Ju, Park, Y. Jin, Yoon, Y. Hun, & Min, G. ho. (2015). Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken design (BBD). Journal of Industrial and Engineering Chemistry, 28, 307–315. doi:10.1016/j.jiec.2015.03.008.

Al-Shannag, M., Lafi, W., Bani-Melhem, K., Gharagheer, F., & Dhaimat, O. (2012). Reduction of COD and TSS from paper industries wastewater using electro-coagulation and chemical coagulation. Separation Science and Technology, 47(5), 700–708. doi:10.1080/01496395.2011.634474.

Sia, Y. Y., Tan, I. A. W., & Abdullah, M. O. (2020). Palm oil mill effluent treatment using electrocoagulation-adsorption hybrid process. Materials Science Forum, 997 MSF, 139–149. doi:10.4028/

Al-Othman, A. A., Kaur, P., Imteaz, M. A., Hashem Ibrahim, M. E., Sillanpää, M., & Mohamed Kamal, M. A. (2022). Modified bio-electrocoagulation system to treat the municipal wastewater for irrigation purposes. Chemosphere, 307, 135746. doi:10.1016/j.chemosphere.2022.135746.

Valente, G. F. S., Santos Mendonça, R. C., Pereira, J. A. M., & Felix, L. B. (2012). The efficiency of electrocoagulation in treating wastewater from a dairy industry, Part I: Iron electrodes. Journal of Environmental Science and Health, Part B, 47(4), 355–361. doi:10.1080/03601234.2012.646174.

Nur, A., & Effendi, A. J. (2014). Electrocoagulation Application of Aluminum Electrode Pairs in the Gray Water Hotel Recycling Process. Journal of Environmental Engineering, 20(1), 58–67. doi:10.5614/jtl.2014.20.1.7.

Ardiansyah, R., Putra, T. M., Suminar, D. R., & Ngatin, A. (2021). Effect of Processing Time on Seawater Desalination with Batch Electrocoagulation Method. Fluida, 14(2), 65–72. doi:10.35313/fluida.v14i2.2828. (In Indonesian).

Fendriani, Y., Nurhidayah, Handayani, L., Samsidar, & Rustan. (2020). The Effect of Variation of Electrode Distance and Time on the pH and TDS of Batik Liquid Waste Using the Electrocoagulation Method. Journal Online of Physics, 5(2), 59–64. doi:10.22437/jop.v5i2.9869. (In Indonesian).

Benhadji, A., Taleb Ahmed, M., & Maachi, R. (2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination, 277(1–3), 128–134. doi:10.1016/j.desal.2011.04.014.

Hasibuan, F. K. (2018). Comparison of the Efficiency of Aluminum (Al), Iron (Fe) and Zinc (Zn) Electrodes in Removing Nitrate and Phosphate by Electrocoagulation Process. PhD Thesis, Universitas Sumatera Utara, Medan, Indonesia. (In Indonesian).

Ho, D. T. K. (2022). Abundance of Microplastics in Wastewater Treatment Sludge. Journal of Human, Earth, and Future, 3(1), 138-146. doi:10.28991/HEF-2022-03-01-010.

Enjarlis, E., Hartanto, S., Christwardana, M., Sijabat, B. F., & Fatlan, O. R. (2019). Combination Process of Electrocoagulation – Advanced Oxidation Based on O3/GAC in Batik Industry Liquid Waste. Journal of Chemical & Environmental Engineering, 14(1), 44–52. doi:10.23955/rkl.v14i1.12274. (In Indonesian).

Radityani, F. A., Hariyadi, S., Suprihatin, S., & Yanto, D. H. Y. (2020). The Application of Electro-Coagulation Technique in Reducing Organic Materials in Waste Water of Fish Culture. Jurnal Ilmu Pertanian Indonesia, 25(2), 284–291. doi:10.18343/jipi.25.2.284. (In Indonesian).

Yunitasari, Y., Elystia, S., & Andesgur, I. (2017). The electrocoagulation method for treating batik wastewater at the Batik Andalan community activity unit, PT. Riau Andalan Pulp and Paper (RAPP). Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, 4(1), 1-9. (In Indonesian).

Kobya, M., Can, O. T., & Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of Hazardous Materials, 100(1–3), 163–178. doi:10.1016/S0304-3894(03)00102-X.

Yetilmezsoy, K., Ilhan, F., Sapci-Zengin, Z., Sakar, S., & Gonullu, M. T. (2009). Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study. Journal of Hazardous Materials, 162(1), 120–132. doi:10.1016/j.jhazmat.2008.05.015.

Arroyo, M. G., Pérez-Herranz, V., Montañés, M. T., García-Antón, J., & Guiñón, J. L. (2009). Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. Journal of Hazardous Materials, 169(1–3), 1127–1133. doi:10.1016/j.jhazmat.2009.04.089.

Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal regeneration and reuse of carbon and glass fibers from waste composites. Emerging Science Journal, 6, 967-984. doi:10.28991/ESJ-2022-06-05-04.

Sanei, E., & Mokhtarani, N. (2022). Leachate post-treatment by electrocoagulation process: Effect of polarity switching and anode-to-cathode surface area. Journal of Environmental Management, 319, 115733. doi:10.1016/j.jenvman.2022.115733.

Wiyanto, E., Harsono, B., Makmur, A., Pangputra, R., Julita, J., & Kurniawan, M. S. (2017). Application of Electrocoagulation in Liquid Waste Purification Process. Scientific Journal of Electrical Engineering. doi:10.25105/jetri.v12i1.1449.

Feng, J., Sun, Y., Zheng, Z., Zhang, J., Li, S., & Tian, Y. (2007). Treatment of tannery wastewater by electrocoagulation. Journal of Environmental Sciences, 19(12), 1409–1415. doi:10.1016/s1001-0742(07)60230-7.

Bazrafshan, E., Moein, H., Kord Mostafapour, F., & Nakhaie, S. (2013). Application of electrocoagulation process for dairy wastewater treatment. Journal of Chemistry, 2013, 1–8. doi:10.1155/2013/640139.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-09


  • There are currently no refbacks.

Copyright (c) 2023 Elanda Fikri, Irfan Arief Sulistiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.