Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology

Temitope F. Awolusi, Oluwasegun J. Aladegboye, Olusola E. Babalola, Emmanuel K. Ayo, Marc Azab, Ahmed F. Deifalla


The growing concern to reduce global warming has necessitated the use of more eco-friendly materials in construction. The study is focused on the utilization of cassava peel ash as supplementary cementitious material and bamboo as reinforcement in concrete beams. The response surface methodology approach was explored to determine the effect of simultaneously varying the cassava peel ash content, bamboo size, beam length, and beam depth on the flexural strength and strain of beams. An analysis of variance was carried out on experimentally obtained results to determine the accuracy of the obtained models and the contributions made by the linear interaction and quadratic terms on flexural strength and flexural strain. The coefficient of determination obtained for RSM models showed a good correlation between all predicted and experimentally obtained results. The optimum conditions obtained for bamboo-reinforced concrete containing cassava peel ash were 3% cassava peel ash, 16 mm bamboo diameter, 500 mm beam length, and 150 mm beam depth. The predicted flexural strengths were 11.85, 14.34, and 14.95 N/mm2 and flexural strains of 0.64, 0.67, and 0.91 for 28 days, 56 days, and 90 days, respectively. To validate the model prediction, a laboratory experiment was conducted using the optimum mix design proportion. From the results obtained, it was observed that the experimental results were close to those predicted by the models. These models can be efficiently used for simulating the flexural behavior of bamboo-reinforced concrete beams.


Doi: 10.28991/CEJ-2023-09-08-011

Full Text: PDF


Cassava Peel Ash; Bamboo; Response Surface Methodology; Flexural Strength; Flexural Strain.


McCormac, J. C., & Brown, R. H. (2015). Design of reinforced concrete. John Wiley & Sons, Hoboken, United States.

Mali, P. R., & Datta, D. (2020). Experimental evaluation of bamboo reinforced concrete beams. Journal of Building Engineering, 28. doi:10.1016/j.jobe.2019.101071.

Aïtcin, P. C., & Mindess, S. (2011). Sustainability of Concrete. CRC Press, London, United Kingdom. doi:10.1201/9781482266696.

Rahim, N. L., Ibrahim, N. M., Salehuddin, S., Mohammed, S. A., & Othman, M. Z. (2020). Investigation of bamboo as concrete reinforcement in the construction for low-cost housing industry. IOP Conference Series: Earth and Environmental Science, 476(1), 012058. doi:10.1088/1755-1315/476/1/012058.

Mali, P. R., & Datta, D. (2018). Experimental evaluation of bamboo reinforced concrete slab panels. Construction and Building Materials, 188, 1092–1100. doi:10.1016/j.conbuildmat.2018.08.162.

Perera, P. M. D. J. S., & Lewangamage, C. S. (2015). Experimental investigation on flexural behaviour of bamboo reinforced concrete slab panels. Annual Sessions of IESL, 108th Annual Transactions, The Institution of Engineers, Colombo, Sri Lanka.

Awolusi, T. F., Borode, A. P., & Aluko, O. G. (2022). An Evaluation of the Flexural and Durability Properties of Bamboo-Reinforced Concrete Prism. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(6), 4343–4353. doi:10.1007/s40996-022-00957-z.

Qaiser, S., Hameed, A., Alyousef, R., Aslam, F., & Alabduljabbar, H. (2020). Flexural strength improvement in bamboo reinforced concrete beams subjected to pure bending. Journal of Building Engineering, 31(101289). doi:10.1016/j.jobe.2020.101289.

Dey, A., & Chetia, N. (2018). Experimental study of Bamboo Reinforced Concrete beams having various frictional properties. Materials Today: Proceedings, 5(1), 436–444. doi:10.1016/j.matpr.2017.11.103.

Archila, H., Kaminski, S., Trujillo, D., Zea Escamilla, E., & Harries, K. A. (2018). Bamboo reinforced concrete: a critical review. Materials and Structures / Materiaux et Constructions, 51(4), 1-18. doi:10.1617/s11527-018-1228-6.

Schneider, N., Pang, W., & Gu, M. (2014). Application of Bamboo for Flexural and Shear Reinforcement in Concrete Beams. Structures Congress 2014. doi:10.1061/9780784413357.091.

Kumar, P. V., & Vasugi, V. (2014). Study on mechanical strength of bamboo reinforced concrete beams. International Journal of Advances in Science Engineering and Technology, 2(3), 103-105.

Siddika, A., Mamun, M. A. Al, & Siddique, M. A. B. (2017). Evaluation of Bamboo Reinforcements in Structural Concrete Member. Journal of Construction Engineering and Project Management, 7(4), 13–19. doi:10.6106/JCEPM.2017.7.4.013.

Bashir, A., Gupta, C., Abubakr, M. A., & Abba, S. I. (2018). Analysis of Bamboo Fibre Reinforced Beam. Journal of Steel Structures & Construction, 04(02), 2–7. doi:10.4172/2472-0437.1000146.

Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y., & Shimizu, H. (1997). Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering, 28(1–2), 13–20. doi:10.1016/s1359-8368(96)00020-0.

Thomas, B. S., Gupta, R. C., Kalla, P., & Cseteneyi, L. (2014). Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates. Construction and Building Materials, 59, 204–212. doi:10.1016/j.conbuildmat.2014.01.074.

Prusty, J. K., & Patro, S. K. (2015). Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate - A review. Construction and Building Materials, 82, 101–113. doi:10.1016/j.conbuildmat.2015.02.063.

Maddalena, R., Roberts, J. J., & Hamilton, A. (2018). Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. Journal of Cleaner Production, 186, 933–942. doi:10.1016/j.jclepro.2018.02.138.

Fernández, Á., García Calvo, J. L., & Alonso, M. C. (2018). Ordinary Portland cement composition for the optimization of the synergies of supplementary cementitious materials of ternary binders in hydration processes. Cement and Concrete Composites, 89, 238–250. doi:10.1016/j.cemconcomp.2017.12.016.

Awolusi, T., Taiwo, A., Aladegboye, O., Oguntayo, D., & Akinkurolere, O. (2022). Optimisation of quinary blended supplementary cementitious material for eco-friendly paving unit using taguchi orthogonal array design. Materials Today: Proceedings, 65, 2221–2227. doi:10.1016/j.matpr.2022.06.263.

Erdem, T. K., & Kirca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22(7), 1477–1483. doi:10.1016/j.conbuildmat.2007.03.026.

Charitha, V., Athira, V. S., Jittin, V., Bahurudeen, A., & Nanthagopalan, P. (2021). Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials, 285, 122851. doi:10.1016/j.conbuildmat.2021.122851.

Adesanya, O. A., Oluyemi, K. A., Josiah, S. J., Adesanya, R., Shittu, L., Ofusori, D., ... & Babalola, G. (2008). Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. The Internet Journal of Microbiology, 5(1), 25-35. doi:10.5580/4f1.

Salau, M. A., & Olonade, K. A. (2011). Pozzolanic Potentials of Cassava Peel Ash. Journal of Engineering Research, 16(1), 10–21.

Haryanto, Y., Wariyatno, N. G., Hu, H. T., Han, A. L., & Hidayat, B. A. (2021). Investigation on Structural Behaviour of Bamboo Reinforced Concrete Slabs under Concentrated Load. Sains Malaysiana, 50(1), 227–238. doi:10.17576/jsm-2021-5001-22.

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O. (2019). Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Studies in Construction Materials, 10. doi:10.1016/j.cscm.2018.e00212.

Ahmed, T., Ray, S., Haque, M., Tasnim Nahin, T., & Ferdous Mita, A. (2022). Optimization of properties of concrete prepared with waste glass aggregate and condensed milk can fiber using response surface methodology. Cleaner Engineering and Technology, 8, 100478. doi:10.1016/j.clet.2022.100478.

ASTM. C642-13. (2022). Standard Test Method for Density‚ Absorption ‚and Voids in Hardened Concrete. ASTM International Pennsylvania, United States. doi:10.1520/C0642-13.

ASTM D2915-03. (2010). Standard practice for shotcrete Evaluating Allowable Properties for Grades of Structural Lumber. ASTM International Pennsylvania, United States. doi:10.1520/D2915-03.

BS 1881: Part 104: 1983. (1983). Testing concrete Part 102. Method for determination of Slump. British Standard, London, United Kingdom.

Yalcin D. (2020). Material Testing System Manufacturer, ADMET. Available online: https://www.admet.com/blog/flexural-testing-essentials/. (accessed on June 2023).

Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. doi:10.1016/j.jclepro.2016.12.156.

Mohammed, B. S., Khed, V. C., & Nuruddin, M. F. (2018). Rubbercrete mixture optimization using response surface methodology. Journal of Cleaner Production, 171, 1605–1621. doi:10.1016/j.jclepro.2017.10.102.

Esfahanian, M., Nikzad, M., Najafpour, G., & Asghar Ghoreyshi, A. (2013). Modeling and optimization of alcoholic fermentation with saccharomyces cerevisiae: Response surface methodology and artificial neural network. Chemical Industry and Chemical Engineering Quarterly, 19(2), 241–252. doi:10.2298/CICEQ120210058E.

Fjodorova, N., & Novič, M. (2015). Searching for optimal setting conditions in technological processes using parametric estimation models and neural network mapping approach: A tutorial. Analytica Chimica Acta, 891, 90–100. doi:10.1016/j.aca.2015.06.020.

Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Engineering Journal, 52(3), 507–516. doi:10.1016/j.aej.2013.06.007.

Myers, R. H., Montgomery, D. C., Geoffrey Vining, G., Borror, C. M., & Kowalski, S. M. (2004). Response Surface Methodology: A Retrospective and Literature Survey. Journal of Quality Technology, 36(1), 53–78. doi:10.1080/00224065.2004.11980252.

Cau Dit Coumes, C., & Courtois, S. (2003). Cementation of a low-level radioactive waste of complex chemistry - Investigation of the combined action of borate, chloride, sulfate and phosphate on cement hydration using response surface methodology. Cement and Concrete Research, 33(3), 305–316. doi:10.1016/S0008-8846(02)00943-2.

Haque, M., Ray, S., Mita, A. F., Bhattacharjee, S., & Shams, M. J. Bin. (2021). Prediction and optimization of the fresh and hardened properties of concrete containing rice hush ash and glass fiber using response surface methodology. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00505.

Poorarbabi, A., Ghasemi, M., & Moghaddam, M. A. (2020). Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939-949. doi:10.1016/j.asej.2020.02.009.

Chaliha, C., Kalita, E., & Verma, P. K. (2020). Optimizing In vitro Culture Conditions for the Biotrophic Fungi Exobasidium vexans Through Response Surface Methodology. Indian Journal of Microbiology, 60(2), 167–174. doi:10.1007/s12088-019-00846-6.

Aldahdooh, M. A. A., Muhamad Bunnori, N., & Megat Johari, M. A. (2013). Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method. Materials & Design (1980-2015), 52, 957–965. doi:10.1016/j.matdes.2013.06.034.

Umeonyiagu, I. E., & Nwobi-Okoye, C. C. (2019). Modelling and multi objective optimization of bamboo reinforced concrete beams using ANN and genetic algorithms. European Journal of Wood and Wood Products, 77, 931-947. doi:10.1007/s00107-019-01418-7.

Govindan, B., Ramasamy, V., Panneerselvam, B., & Rajan, D. (2022). Performance assessment on bamboo reinforced concrete beams. Innovative Infrastructure Solutions, 7, 1-13. doi:10.1007/s41062-021-00616-8.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-011


  • There are currently no refbacks.

Copyright (c) 2023 Temitope Funmilayo Awolusi, Oluwasegun J. Aladegboye, Olusola E. Babalola, Emmanuel K. Ayo, Marc Azab, Ahmed F. Deifalla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.