Performance Analysis of Nanofluid-based Photovoltaic Thermal Collector with Different Convection Cooling Flow
Abstract
Doi: 10.28991/CEJ-2023-09-08-08
Full Text: PDF
Keywords
References
Kazem, H. A., Al-Badi, H. A. S., Al Busaidi, A. S., & Chaichan, M. T. (2017). Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environment, Development and Sustainability, 19(5), 1761–1778. doi:10.1007/s10668-016-9828-1.
Good, C., Chen, J., Dai, Y., & Hestnes, A. G. (2015). Hybrid Photovoltaic-thermal Systems in Buildings-A Review. Energy Procedia, 70, 683–690. doi:10.1016/j.egypro.2015.02.176.
Yang, T., & Athienitis, A. K. (2016). A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renewable and Sustainable Energy Reviews, 66, 886–912. doi:10.1016/j.rser.2016.07.011.
Fang, X., & Li, D. (2013). Solar photovoltaic and thermal technology and applications in China. Renewable and Sustainable Energy Reviews, 23, 330–340. doi:10.1016/j.rser.2013.03.010.
Arifin, Z., Tribhuwana, B. A., Kristiawan, B., Tjahjana, D. D. D. P., Hadi, S., Rachmanto, R. A., Prasetyo, S. D., & Hijriawan, M. (2022). The Effect of Soybean Wax as a Phase Change Material on the Cooling Performance of Photovoltaic Solar Panel. International Journal of Heat and Technology, 40(1), 326–332. doi:10.18280/ijht.400139.
Hasan, A., McCormack, S. J., Huang, M. J., & Norton, B. (2010). Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy, 84(9), 1601–1612. doi:10.1016/j.solener.2010.06.010.
Kumar, A., Baredar, P., & Qureshi, U. (2015). Historical and recent development of photovoltaic thermal (PVT) technologies. Renewable and Sustainable Energy Reviews, 42, 1428–1436. doi:10.1016/j.rser.2014.11.044.
Hajji, M., Labrim, H., Benaissa, M., Laazizi, A., Ez-Zahraouy, H., Ntsoenzok, E., Meot, J., & Benyoussef, A. (2017). Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Conversion and Management, 136, 184–191. doi:10.1016/j.enconman.2016.12.088.
Shan, F., Tang, F., Cao, L., & Fang, G. (2014). Comparative simulation analyses on dynamic performances of photovoltaic-thermal solar collectors with different configurations. Energy Conversion and Management, 87, 778–786. doi:10.1016/j.enconman.2014.07.077.
Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. doi:10.1002/er.4282.
Hader, M., & Al-Kouz, W. (2019). Performance of a hybrid photovoltaic/thermal system utilizing water-Al2O3 nanofluid and fins. International Journal of Energy Research, 43(1), 219–230. doi:10.1002/er.4253.
Abdolzadeh, M., & Ameri, M. (2009). Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable Energy, 34(1), 91–96. doi:10.1016/j.renene.2008.03.024.
Hadipour, A., Rajabi Zargarabadi, M., & Rashidi, S. (2021). An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867–875. doi:10.1016/j.renene.2020.09.021.
Kordzadeh, A. (2010). The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water. Renewable Energy, 35(5), 1098–1102. doi:10.1016/j.renene.2009.10.024.
Jakhar, S., Soni, M. S., & Gakkhar, N. (2017). An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Solar Energy, 157, 81–93. doi:10.1016/j.solener.2017.08.008.
Nižetić, S., Čoko, D., Yadav, A., & Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Conversion and Management, 108, 287–296. doi:10.1016/j.enconman.2015.10.079.
Chandrasekar, M., & Senthilkumar, T. (2015). Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures. Energy, 90, 1401–1410. doi:10.1016/j.energy.2015.06.074.
Hosseini, R., Hosseini, N., & Khorasanizadeh, H. (2011). An Experimental Study of Combining a Photovoltaic System with a Heating System. Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. doi:10.3384/ecp110572993.
Ibrahim, A., Othman, M. Y., Ruslan, M. H., Mat, S., & Sopian, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15(1), 352–365. doi:10.1016/j.rser.2010.09.024.
Kahani, M., Zamen, M., & Rostami, B. (2022). Modeling and empirical study of TiO2/water nanofluid flows in a modified configuration with new layer arrangement of a photovoltaic/thermal system. Sustainable Energy Technologies and Assessments, 51. doi:10.1016/j.seta.2021.101932.
Ahmed, A., Zhang, G., Shanks, K., Sundaram, S., Ding, Y., & Mallick, T. (2021). Performance evaluation of single multi-junction solar cell for high concentrator photovoltaics using mini-channel heat sink with nanofluids. Applied Thermal Engineering, 182. doi:10.1016/j.applthermaleng.2020.115868.
Bianco, V., Scarpa, F., & Tagliafico, L. A. (2018). Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renewable Energy, 116, 9–21. doi:10.1016/j.renene.2017.09.067.
Fayaz, H., Nasrin, R., Rahim, N. A., & Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 169, 217–230. doi:10.1016/j.solener.2018.05.004.
Al-Shamani, A. N., Sopian, K., Mat, S., Hasan, H. A., Abed, A. M., & Ruslan, M. H. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124, 528–542. doi:10.1016/j.enconman.2016.07.052.
Ebaid, M. S. Y., Ghrair, A. M., & Al-Busoul, M. (2018). Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Conversion and Management, 155, 324–343. doi:10.1016/j.enconman.2017.10.074.
Arifin, Z., Prasetyo, S. D., Tjahjana, D. D. D. P., Rachmanto, R. A., Prabowo, A. R., & Alfaiz, N. F. (2022). The application of TiO2 nanofluids in photovoltaic thermal collector systems. Energy Reports, 8, 1371–1380. doi:10.1016/j.egyr.2022.08.070.
Kristiawan, B., Rifa’i, A. I., Enoki, K., Wijayanta, A. T., & Miyazaki, T. (2020). Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube. Powder Technology, 376, 254–262. doi:10.1016/j.powtec.2020.08.020.
Fedele, L., Colla, L., & Bobbo, S. (2012). Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. International Journal of Refrigeration, 35(5), 1359–1366. doi:10.1016/j.ijrefrig.2012.03.012.
Ali, A. R. I., & Salam, B. (2020). A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Applied Sciences, 2(10). doi:10.1007/s42452-020-03427-1.
Prasetyo, S. D., Prabowo, A. R., & Arifin, Z. (2022). Investigation of Thermal Collector Nanofluids to Increase the Efficiency of Photovoltaic Solar Cells. International Journal of Heat and Technology, 40(2), 415–422. doi:10.18280/ijht.400208.
Arifin, Z., Kuncoro, I. W., & Hijriawan, M. (2021). Solar Simulator Development for 50 WP Solar Photovoltaic Experimental Design Using Halogen Lamp. International Journal of Heat and Technology, 39(6), 1741–1747. doi:10.18280/ijht.390606.
Kristiawan, B., Kamal, S., Suhanan, & Yanuar. (2016). Thermo-hydraulic characteristics of anatase titania nanofluids flowing through a circular conduit. Journal of Nanoscience and Nanotechnology, 16(6), 6078–6085. doi:10.1166/jnn.2016.10902.
Mahanpour, K., Sarli, S., Saghi, M., Asadi, B., Aghayari, R., & Maddah, H. (2015). Investigation on Physical Properties of Al 2 O 3 /Water Nano Fluid. Journal of Materials Science & Surface Engineering, 2(2), 114–119.
Safir, N. H., Razlan, Z. M., Amin, N. A. M., & Bin-Abdun, N. A. (2019). Experimental investigation of thermophysical properties ZnO nanofluid with different concentrations. In AIP Conference Proceedings (Vol. 2129). doi:10.1063/1.5118058.
Apmann, K., Fulmer, R., Soto, A., & Vafaei, S. (2021). Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials, 14(5), 1–75. doi:10.3390/ma14051291.
Hussein, A. M., Bakar, R. A., Kadirgama, K., & Sharma, K. V. (2013). Experimental measurement of nanofluids thermal properties. International Journal of Automotive and Mechanical Engineering, 7(1), 850–863. doi:10.15282/ijame.7.2012.5.0070.
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170. doi:10.1080/08916159808946559.
Nguyen, C. T., Galanis, N., Polidori, G., Fohanno, S., Popa, C. V., & Le Bechec, A. (2009). An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid. International Journal of Thermal Sciences, 48(2), 401–411. doi:10.1016/j.ijthermalsci.2008.10.007.
Teo, H. G., Lee, P. S., & Hawlader, M. N. A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309–315. doi:10.1016/j.apenergy.2011.01.017.
Gangadevi, R., Vinayagam, B. K., & Senthilraja, S. (2017). Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid. IOP Conference Series: Materials Science and Engineering, 197(1). doi:10.1088/1757-899X/197/1/012041.
Kawajiri, K., Oozeki, T., & Genchi, Y. (2011). Effect of temperature on PV potential in the world. Environmental Science and Technology, 45(20), 9030–9035. doi:10.1021/es200635x.
Al-Waeli, A. H., Chaichan, M. T., Sopian, K., & Kazem, H. A. (2017). Energy storage: CFD modeling of thermal energy storage for a phase change materials (PCM) added to a PV/T using nanofluid as a coolant. Journal of Scientific and Engineering Research, 4(12), 193-202.
Tarrad, A. H. (2022). 3d numerical modeling to evaluate the thermal performance of single and double u-tube ground-coupled heat pump. HighTech and Innovation Journal, 3(2), 115-129. doi:10.28991/HIJ-2022-03-02-01.
Hemmat Esfe, M., Saedodin, S., Wongwises, S., & Toghraie, D. (2015). An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry, 119(3), 1817–1824. doi:10.1007/s10973-014-4328-8.
Hussien, A., Eltayesh, A., & El-Batsh, H. M. (2023). Experimental and numerical investigation for PV cooling by forced convection. Alexandria Engineering Journal, 64, 427–440. doi:10.1016/j.aej.2022.09.006.
Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Ibrahim, A., & Kazem, H. A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78, 641–651. doi:10.1016/j.enconman.2013.11.017.
Sardarabadi, M., Hosseinzadeh, M., Kazemian, A., & Passandideh-Fard, M. (2017). Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy, 138, 682–695. doi:10.1016/j.energy.2017.07.046.
Gang, P., Huide, F., Jie, J., Tin-Tai, C., & Tao, Z. (2012). Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production. Energy Conversion and Management, 56, 8–21. doi:10.1016/j.enconman.2011.11.011.
Ekramian, E., Etemad, S. Gh., & Haghshenasfard, M. (2014). Numerical Analysis of Heat Transfer Performance of Flat Plate Solar Collectors. Journal of Fluid Flow, Heat and Mass Transfer. doi:10.11159/jffhmt.2014.006.
Kaya, H., & Arslan, K. (2018). Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids. Heat and Mass Transfer, 55(3), 581–593. doi:10.1007/s00231-018-2442-z.
Zhang, T., & Yang, H. (2018). High efficiency plants and building integrated renewable energy systems: Building-integrated photovoltaics (BIPV). Handbook of Energy Efficiency in Buildings: A Life Cycle Approach. Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-12-812817-6.00040-1.
Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192–203. doi:10.1016/j.rser.2017.05.053.
Chegaar, M., Hamzaoui, A., Namoda, A., Petit, P., Aillerie, M., & Herguth, A. (2013). Effect of illumination intensity on solar cells parameters. Energy Procedia, 36, 722–729. doi:10.1016/j.egypro.2013.07.084.
Li, Z., Yang, J., & Dezfuli, P. A. N. (2021). Study on the Influence of Light Intensity on the Performance of Solar Cell. International Journal of Photoenergy, 2021. doi:10.1155/2021/6648739.
Bazzari, H., Abushgair, K., Hamdan, M., & Alkhaldi, H. (2020). Cooling solar cells using ZnO nanoparticles as a down-shifter. Thermal Science, 24(2 Part A), 809–814. doi:10.2298/tsci180324004b.
Sathyamurthy, R., Kabeel, A. E., Chamkha, A., Karthick, A., Muthu Manokar, A., & Sumithra, M. G. (2021). Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Applied Nanoscience (Switzerland), 11(2), 363–374. doi:10.1007/s13204-020-01598-2.
Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393–1402. doi:10.1016/j.solmat.2008.05.016.
Razali, N. F. M., Fudholi, A., Ruslan, M. H., & Sopian, K. (2020). Electrical characteristics of photovoltaic thermal collector with water-titania nanofluid flow. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 73(2), 20–28. doi:10.37934/ARFMTS.73.2.2028.
Hussain, M. I., Lee, G. H., & Kim, J. T. (2021). A comprehensive performance characterization of a nanofluid-powered dual-fluid PV/T system under outdoor steady state conditions. Sustainability (Switzerland), 13(23), 3134. doi:10.3390/su132313134.
Verma, S., Mohapatra, S., Chowdhury, S., & Dwivedi, G. (2020). Cooling techniques of the PV module: A review. Materials Today: Proceedings, 38, 253–258. doi:10.1016/j.matpr.2020.07.130.
DOI: 10.28991/CEJ-2023-09-08-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Zainal Arifin, Nuha Khairunisa, Budi Kristiawan, Singgih Dwi Prasetyo, Watuhumalang Bhre Bangun
This work is licensed under a Creative Commons Attribution 4.0 International License.