Applying the Porosity-to-Cement Index for Estimating the Mechanical Strength, Durability, and Microstructure of Artificially Cemented Soil
Downloads
Doi: 10.28991/CEJ-2023-09-05-02
Full Text: PDF
[2] Sirivitmaitrie, C., Puppala, A., Saride, S., & Hoyos, L. (2011). Combined lime-cement stabilization for longer life of low-volume roads. Transportation Research Record, 2204(2204), 140–147. doi:10.3141/2204-18.
[3] Bunawan, A. R., Momeni, E., Armaghani, D. J., Nissa binti Mat Said, K., & Rashid, A. S. A. (2018). Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement, 124, 529–538. doi:10.1016/j.measurement.2018.04.057.
[4] Chen, C., Zhang, G., Zornberg, J. G., Morsy, A. M., Zhu, S., & Zhao, H. (2018). Interface behavior of tensioned bars embedded in cement-soil mixtures. Construction and Building Materials, 186, 840–853. doi:10.1016/j.conbuildmat.2018.07.211.
[5] Fan, J., Wang, D., & Qian, D. (2018). Soil-cement mixture properties and design considerations for reinforced excavation. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 791–797. doi:10.1016/j.jrmge.2018.03.004.
[6] Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.
[7] Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2019). Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 167, 33–42. doi:10.1016/j.clay.2018.10.005.
[8] Farouk, A., & Shahien, M. M. (2013). Ground improvement using soil-cement columns: Experimental investigation. Alexandria Engineering Journal, 52(4), 733–740. doi:10.1016/j.aej.2013.08.009.
[9] Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. doi:10.1016/j.conbuildmat.2018.07.207.
[10] Horpibulsuk, S., Chinkulkijniwat, A., Cholphatsorn, A., Suebsuk, J., & Liu, M. D. (2012). Consolidation behavior of soil-cement column improved ground. Computers and Geotechnics, 43, 37–50. doi:10.1016/j.compgeo.2012.02.003.
[11] Sukmak, G., Sukmak, P., Horpibulsuk, S., Arulrajah, A., & Horpibulsuk, J. (2023). Generalized strength prediction equation for cement stabilized clayey soils. Applied Clay Science, 231, 106761. doi:10.1016/j.clay.2022.106761.
[12] Goodary, R., Lecomte-Nana, G. L., Petit, C., & Smith, D. S. (2012). Investigation of the strength development in cement-stabilised soils of volcanic origin. Construction and Building Materials, 28(1), 592–598. doi:10.1016/j.conbuildmat.2011.08.054.
[13] Jan, O. Q., & Mir, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2). doi:10.1007/s40891-018-0133-y.
[14] Chompoorat, T., Maikhun, T., & Likitlersuang, S. (2019). Cement-improved lake bed sedimentary soil for road construction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 172(3), 192–201. doi:10.1680/jgrim.18.00076.
[15] Baldovino, J. de J. A., Moreira, E. B., Carazzai, í‰., Rocha, E. V. de G., dos Santos Izzo, R., Mazer, W., & Rose, J. L. (2021). Equations controlling the strength of sedimentary silty soil–cement blends: influence of voids/cement ratio and types of cement. International Journal of Geotechnical Engineering, 15(3), 359–372. doi:10.1080/19386362.2019.1612134.
[16] de Jesús Arrieta Baldovino, J., & Luis dos Santos Izzo, R. (2019). Relaçí£o Porosidade/Cimento Como Parí¢metro De Controle Na Estabilizaçí£o De Um Solo Siltoso. Colloquium Exactarum, 11(1), 89–100. doi:10.5747/ce.2019.v11.n1.e269. (In Portuguese).
[17] Ferreira, F. A., Desir, J. M., Lima, G. E. S. de, Pedroti, L. G., Franco de Carvalho, J. M., Lotero, A., & Consoli, N. C. (2023). Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement. Construction and Building Materials, 364, 129931. doi:10.1016/j.conbuildmat.2022.129931.
[18] Silvani, C., Ibraim, E., Scheuermann Filho, H. C., Festugato, L., Diambra, A., & Consoli, N. C. (2022). Sand-Fly Ash-Lime Blends: Mechanical Behavior under Multiaxial Stress Condition. Journal of Materials in Civil Engineering, 34(5). doi:10.1061/(asce)mt.1943-5533.0004199.
[19] Buritatum, A., Aiamsri, K., Yaowarat, T., Suddeepong, A., Horpibulsuk, S., Arulrajah, A., & Kou, H. (2023). Improved Fatigue Performance and Cost-Effectiveness of Natural Rubber Latex–Modified Cement-Stabilized Pavement Base at Raised Temperatures. Journal of Materials in Civil Engineering, 35(3). doi:10.1061/(asce)mt.1943-5533.0004637.
[20] Baldovino, J. A., Moreira, E. B., Teixeira, W., Izzo, R. L. S., & Rose, J. L. (2018). Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. Journal of Rock Mechanics and Geotechnical Engineering, 10(1), 188–194. doi:10.1016/j.jrmge.2017.10.001.
[21] Baldovino, J. A., Moreira, E. B., Izzo, R. L. dos S., & Rose, J. L. (2018). Empirical Relationships with Unconfined Compressive Strength and Split Tensile Strength for the Long Term of a Lime-Treated Silty Soil. Journal of Materials in Civil Engineering, 30(8), 6018008. doi:10.1061/(asce)mt.1943-5533.0002378.
[22] Nematzadeh, M., Zarfam, P., & Nikoo, M. (2017). Investigating laboratory parameters of the resistance of different mixtures of soil – lime – fume using the curing and administrative method. Case Studies in Construction Materials, 7, 263–279. doi:10.1016/j.cscm.2017.08.002.
[23] Baldovino, J. D. J. A. (2018). Mechanical behavior of a silty soil from the Guabirotuba geological formation treated with lime at different curing times. Master Thesis, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil. (In Portuguese).
[24] Morales Kormann, A.C. (2002). Geomechanical behavior of the Guabirotuba Formation: field and laboratory studies. PhD thesis, University of Sí£o Paulo, Sí£o Paulo, Brazil.
[25] Moreira, E. B., Baldovino, J. A., Rose, J. L., & Luis dos Santos Izzo, R. (2019). Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 369–378. doi:10.1016/j.jrmge.2018.04.015.
[26] ASTM D2487-17e1. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.
[27] NBR 6459. (2016). Soil ” Determination of the liquidity limit. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[28] NBR7180. (2016). Determination of Plasticity Limit. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[29] ASTM D854-14. (2016). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
[30] NBR 6502. (1995). Rocks and Soils. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[31] ASTM D 2487-11. (2018). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-11.
[32] NBR 7182. (1988). Soil - Compaction Test. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[33] AASHTO. (1982). AASHTO Materials, Part I, Specifications. American Association of State Highway and Transportation Officials, Washington, United States.
[34] DNER-ME 256/94. (1994). Compacted soils with miniature equipment - determination of mass loss by immersion. Departamento Nacional de Estradas de Rodagem, Vitória, Brazil. (In Portuguese).
[35] DNER 196/89. (1989). Classification of Tropical Soils According to the MCT Methodology. Departamento Nacional de Estradas de Rodagem, Vitória, Brazil. (In Portuguese).
[36] NBR 16605. (2017). Portland cement and other powdered materials-Determination of density. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[37] Consoli, N. C., Quiñónez, R. A., González, L. E., & López, R. A. (2017). Influence of Molding Moisture Content and Porosity / Cement Index on Stiffness, Strength, and Failure Envelopes of Artificially Cemented Fine-Grained Soils. Journal of Materials in Civil Engineering, 29(5), 4016277. doi:10.1061/(asce)mt.1943-5533.0001819.
[38] Consoli, N. C., Marques, S. F. V., Floss, M. F., & Festugato, L. (2017). Broad-Spectrum Empirical Correlation Determining Tensile and Compressive Strength of Cement-Bonded Clean Granular Soils. Journal of Materials in Civil Engineering, 29(6), 1–7. doi:10.1061/(asce)mt.1943-5533.0001858.
[39] Festugato, L., Menger, E., Benezra, F., Kipper, E. A., & Consoli, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77–82. doi:10.1016/j.geotexmem.2016.09.001.
[40] NBR 5739. (2007). Concrete - Compression Tests of Cylindrical Specimens. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[41] NBR 7222. (2011). Concrete and mortar-Determination of tensile strength by diametric compression of cylindrical specimens. Associaçí£o Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).
[42] ASTMC496/C496M-11. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-11.
[43] ASTM D559/D559-15. (2016). Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D0559_D0559M-15.
[44] Baldovino, J. de J. A., Izzo, R. L. dos S., Feltrim, F., & da Silva, í‰. R. (2020). Experimental Study on Guabirotuba's Soil Stabilization Using Extreme Molding Conditions. Geotechnical and Geological Engineering, 38(3), 2591–2607. doi:10.1007/s10706-019-01171-x.
[45] Diambra, A., Ibraim, E., Peccin, A., Consoli, N. C., & Festugato, L. (2017). Theoretical Derivation of Artificially Cemented Granular Soil Strength. Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 4017003. doi:10.1061/(asce)gt.1943-5606.0001646.
[46] Tex-120-E. (2013). (TxDOT) test procedure for soil-cement testing. Texas Department of transportation, Austin, United States.
[47] DNIT 143-10. (2010). Paving - Soil-cement base. Departamento Nacional de Infraestrutura de Transportes, Lages – SC, Brazil.
[48] Baldovino, J. de J. A., Izzo, R. L. dos S., Pereira, M. D., Rocha, E. V. de G., Rose, J. L., & Bordignon, V. R. (2020). Equations Controlling Tensile and Compressive Strength Ratio of Sedimentary Soil–Cement Mixtures under Optimal Compaction Conditions. Journal of Materials in Civil Engineering, 32(1). doi:10.1061/(asce)mt.1943-5533.0002973.
[49] Rios, S., Viana Da Fonseca, A., Consoli, N. C., Floss, M., & Cristelo, N. (2013). Influence of grain size and mineralogy on the porosity/cement ratio. Geotechnique Letters, 3(JULY/SEPT), 130–136. doi:10.1680/geolett.13.00003.
[50] Krishnan, A. K., Wong, Y. C., Zhang, Z., & Arulrajah, A. (2022). Recycling of glass fines and plastics in clay bricks at low temperatures. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 1–9. doi:10.1680/jwarm.22.00014.
[51] Portland Cement Association. (1992). Soil-Cement Laboratory Handbook. Portland Cement Association, Washington, United States.
[52] Udomchai, A., Buritatum, A., Suddeepong, A., Hoy, M., Horpibulsuk, S., Arulrajah, A., & Horpibulsuk, J. (2022). Evaluation of durability against wetting and drying cycles of cement-natural rubber latex stabilised unpaved road under cyclic tensile loading. International Journal of Pavement Engineering, 23(12), 4442–4453. doi:10.1080/10298436.2021.1950719.
[53] Mustafa, Y. M. H., Al-Amoudi, O. S. B., Zami, M. S., & Al-Osta, M. A. (2023). Strength and durability assessment of stabilized Najd soil for usage as earth construction materials. Bulletin of Engineering Geology and the Environment, 82(2), 55. doi:10.1007/s10064-023-03075-w.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.