Applying the Porosity-to-Cement Index for Estimating the Mechanical Strength, Durability, and Microstructure of Artificially Cemented Soil

Jair Arrieta-Baldovino, Ronaldo Izzo, Carlos Millan-Paramo

Abstract


Fine, expansive, and problematic soils cannot be used in fills or paving layers. Through additions to these soils, they can be converted into technically usable materials in civil construction. One methodology to make them viable for construction is through a stabilization process. Nevertheless, current methodologies regarding dosage based on compaction effort and the volumetric amount of binder used are unclear. Thus, this research describes cement-stabilized sedimentary silt's strength and durability properties from Curitiba (Brazil) for future application in paving. Splitting tensile strength, unconfined compressive strength, and loss of mass against wetting and drying cycles (W-D) were investigated in the laboratory utilizing greenish-gray silt (originating from one of the Guabirotuba Formation layers, Paraná) and high-early strength Portland cement- ARI (CPV). Utilized were cement concentrations (C) of 3, 5, 7, and 9%, molding dry unit weights (d) of 14, 15, and 16 kN/m3, curing periods (t) of 7, 14, and 28 days, and constant moisture content (w) of 23%. With an increase in cement concentration and curing time, the compacted mixes demonstrate an increase in strength, an improvement in microstructure, and a decrease in accumulated mass loss (ALM) and initial porosity (η). Using the porosity/volumetric cement content ratio (η/Civ), the lowest amount of cement required to stabilize the soil in terms of strength and durability was determined. The porosity/cement index provided an appropriate parameter for modeling the mechanical and durability properties, and a unique equation between the strength/accumulated loss of mass and the porosity/binder index was obtained for the curing times studied. Lastly, C = 5% by weight is the minimum acceptable amount for prospective subbase soil application.

 

Doi: 10.28991/CEJ-2023-09-05-02

Full Text: PDF


Keywords


GNSS Network; Aitolo-Akarnania; Trichonis Lake; Slip Rate; Velocity Field; Soil.

References


Forcelini, M., Garbin, G. R., Faro, V. P., & Consoli, N. C. (2016). Mechanical Behavior of Soil Cement Blends with Osorio Sand. Procedia Engineering, 143, 75–81. doi:10.1016/j.proeng.2016.06.010.

Sirivitmaitrie, C., Puppala, A., Saride, S., & Hoyos, L. (2011). Combined lime-cement stabilization for longer life of low-volume roads. Transportation Research Record, 2204(2204), 140–147. doi:10.3141/2204-18.

Bunawan, A. R., Momeni, E., Armaghani, D. J., Nissa binti Mat Said, K., & Rashid, A. S. A. (2018). Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement, 124, 529–538. doi:10.1016/j.measurement.2018.04.057.

Chen, C., Zhang, G., Zornberg, J. G., Morsy, A. M., Zhu, S., & Zhao, H. (2018). Interface behavior of tensioned bars embedded in cement-soil mixtures. Construction and Building Materials, 186, 840–853. doi:10.1016/j.conbuildmat.2018.07.211.

Fan, J., Wang, D., & Qian, D. (2018). Soil-cement mixture properties and design considerations for reinforced excavation. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 791–797. doi:10.1016/j.jrmge.2018.03.004.

Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.

Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2019). Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 167, 33–42. doi:10.1016/j.clay.2018.10.005.

Farouk, A., & Shahien, M. M. (2013). Ground improvement using soil-cement columns: Experimental investigation. Alexandria Engineering Journal, 52(4), 733–740. doi:10.1016/j.aej.2013.08.009.

Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. doi:10.1016/j.conbuildmat.2018.07.207.

Horpibulsuk, S., Chinkulkijniwat, A., Cholphatsorn, A., Suebsuk, J., & Liu, M. D. (2012). Consolidation behavior of soil-cement column improved ground. Computers and Geotechnics, 43, 37–50. doi:10.1016/j.compgeo.2012.02.003.

Sukmak, G., Sukmak, P., Horpibulsuk, S., Arulrajah, A., & Horpibulsuk, J. (2023). Generalized strength prediction equation for cement stabilized clayey soils. Applied Clay Science, 231, 106761. doi:10.1016/j.clay.2022.106761.

Goodary, R., Lecomte-Nana, G. L., Petit, C., & Smith, D. S. (2012). Investigation of the strength development in cement-stabilised soils of volcanic origin. Construction and Building Materials, 28(1), 592–598. doi:10.1016/j.conbuildmat.2011.08.054.

Jan, O. Q., & Mir, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2). doi:10.1007/s40891-018-0133-y.

Chompoorat, T., Maikhun, T., & Likitlersuang, S. (2019). Cement-improved lake bed sedimentary soil for road construction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 172(3), 192–201. doi:10.1680/jgrim.18.00076.

Baldovino, J. de J. A., Moreira, E. B., Carazzai, É., Rocha, E. V. de G., dos Santos Izzo, R., Mazer, W., & Rose, J. L. (2021). Equations controlling the strength of sedimentary silty soil–cement blends: influence of voids/cement ratio and types of cement. International Journal of Geotechnical Engineering, 15(3), 359–372. doi:10.1080/19386362.2019.1612134.

de Jesús Arrieta Baldovino, J., & Luis dos Santos Izzo, R. (2019). Relação Porosidade/Cimento Como Parâmetro De Controle Na Estabilização De Um Solo Siltoso. Colloquium Exactarum, 11(1), 89–100. doi:10.5747/ce.2019.v11.n1.e269. (In Portuguese).

Ferreira, F. A., Desir, J. M., Lima, G. E. S. de, Pedroti, L. G., Franco de Carvalho, J. M., Lotero, A., & Consoli, N. C. (2023). Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement. Construction and Building Materials, 364, 129931. doi:10.1016/j.conbuildmat.2022.129931.

Silvani, C., Ibraim, E., Scheuermann Filho, H. C., Festugato, L., Diambra, A., & Consoli, N. C. (2022). Sand-Fly Ash-Lime Blends: Mechanical Behavior under Multiaxial Stress Condition. Journal of Materials in Civil Engineering, 34(5). doi:10.1061/(asce)mt.1943-5533.0004199.

Buritatum, A., Aiamsri, K., Yaowarat, T., Suddeepong, A., Horpibulsuk, S., Arulrajah, A., & Kou, H. (2023). Improved Fatigue Performance and Cost-Effectiveness of Natural Rubber Latex–Modified Cement-Stabilized Pavement Base at Raised Temperatures. Journal of Materials in Civil Engineering, 35(3). doi:10.1061/(asce)mt.1943-5533.0004637.

Baldovino, J. A., Moreira, E. B., Teixeira, W., Izzo, R. L. S., & Rose, J. L. (2018). Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. Journal of Rock Mechanics and Geotechnical Engineering, 10(1), 188–194. doi:10.1016/j.jrmge.2017.10.001.

Baldovino, J. A., Moreira, E. B., Izzo, R. L. dos S., & Rose, J. L. (2018). Empirical Relationships with Unconfined Compressive Strength and Split Tensile Strength for the Long Term of a Lime-Treated Silty Soil. Journal of Materials in Civil Engineering, 30(8), 6018008. doi:10.1061/(asce)mt.1943-5533.0002378.

Nematzadeh, M., Zarfam, P., & Nikoo, M. (2017). Investigating laboratory parameters of the resistance of different mixtures of soil – lime – fume using the curing and administrative method. Case Studies in Construction Materials, 7, 263–279. doi:10.1016/j.cscm.2017.08.002.

Baldovino, J. D. J. A. (2018). Mechanical behavior of a silty soil from the Guabirotuba geological formation treated with lime at different curing times. Master Thesis, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil. (In Portuguese).

Morales Kormann, A.C. (2002). Geomechanical behavior of the Guabirotuba Formation: field and laboratory studies. PhD thesis, University of São Paulo, São Paulo, Brazil.

Moreira, E. B., Baldovino, J. A., Rose, J. L., & Luis dos Santos Izzo, R. (2019). Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 369–378. doi:10.1016/j.jrmge.2018.04.015.

ASTM D2487-17e1. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.

NBR 6459. (2016). Soil — Determination of the liquidity limit. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

NBR7180. (2016). Determination of Plasticity Limit. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

ASTM D854-14. (2016). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.

NBR 6502. (1995). Rocks and Soils. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

ASTM D 2487-11. (2018). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-11.

NBR 7182. (1988). Soil - Compaction Test. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

AASHTO. (1982). AASHTO Materials, Part I, Specifications. American Association of State Highway and Transportation Officials, Washington, United States.

DNER-ME 256/94. (1994). Compacted soils with miniature equipment - determination of mass loss by immersion. Departamento Nacional de Estradas de Rodagem, Vitória, Brazil. (In Portuguese).

DNER 196/89. (1989). Classification of Tropical Soils According to the MCT Methodology. Departamento Nacional de Estradas de Rodagem, Vitória, Brazil. (In Portuguese).

NBR 16605. (2017). Portland cement and other powdered materials-Determination of density. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

Consoli, N. C., Quiñónez, R. A., González, L. E., & López, R. A. (2017). Influence of Molding Moisture Content and Porosity / Cement Index on Stiffness, Strength, and Failure Envelopes of Artificially Cemented Fine-Grained Soils. Journal of Materials in Civil Engineering, 29(5), 4016277. doi:10.1061/(asce)mt.1943-5533.0001819.

Consoli, N. C., Marques, S. F. V., Floss, M. F., & Festugato, L. (2017). Broad-Spectrum Empirical Correlation Determining Tensile and Compressive Strength of Cement-Bonded Clean Granular Soils. Journal of Materials in Civil Engineering, 29(6), 1–7. doi:10.1061/(asce)mt.1943-5533.0001858.

Festugato, L., Menger, E., Benezra, F., Kipper, E. A., & Consoli, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77–82. doi:10.1016/j.geotexmem.2016.09.001.

NBR 5739. (2007). Concrete - Compression Tests of Cylindrical Specimens. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

NBR 7222. (2011). Concrete and mortar-Determination of tensile strength by diametric compression of cylindrical specimens. Associação Brasileira de Normas Técnicas (ABNT), Rio de Janeiro, Brazil. (In Portuguese).

ASTMC496/C496M-11. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-11.

ASTM D559/D559-15. (2016). Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D0559_D0559M-15.

Baldovino, J. de J. A., Izzo, R. L. dos S., Feltrim, F., & da Silva, É. R. (2020). Experimental Study on Guabirotuba’s Soil Stabilization Using Extreme Molding Conditions. Geotechnical and Geological Engineering, 38(3), 2591–2607. doi:10.1007/s10706-019-01171-x.

Diambra, A., Ibraim, E., Peccin, A., Consoli, N. C., & Festugato, L. (2017). Theoretical Derivation of Artificially Cemented Granular Soil Strength. Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 4017003. doi:10.1061/(asce)gt.1943-5606.0001646.

Tex-120-E. (2013). (TxDOT) test procedure for soil-cement testing. Texas Department of transportation, Austin, United States.

DNIT 143-10. (2010). Paving - Soil-cement base. Departamento Nacional de Infraestrutura de Transportes, Lages – SC, Brazil.

Baldovino, J. de J. A., Izzo, R. L. dos S., Pereira, M. D., Rocha, E. V. de G., Rose, J. L., & Bordignon, V. R. (2020). Equations Controlling Tensile and Compressive Strength Ratio of Sedimentary Soil–Cement Mixtures under Optimal Compaction Conditions. Journal of Materials in Civil Engineering, 32(1). doi:10.1061/(asce)mt.1943-5533.0002973.

Rios, S., Viana Da Fonseca, A., Consoli, N. C., Floss, M., & Cristelo, N. (2013). Influence of grain size and mineralogy on the porosity/cement ratio. Geotechnique Letters, 3(JULY/SEPT), 130–136. doi:10.1680/geolett.13.00003.

Krishnan, A. K., Wong, Y. C., Zhang, Z., & Arulrajah, A. (2022). Recycling of glass fines and plastics in clay bricks at low temperatures. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 1–9. doi:10.1680/jwarm.22.00014.

Portland Cement Association. (1992). Soil-Cement Laboratory Handbook. Portland Cement Association, Washington, United States.

Udomchai, A., Buritatum, A., Suddeepong, A., Hoy, M., Horpibulsuk, S., Arulrajah, A., & Horpibulsuk, J. (2022). Evaluation of durability against wetting and drying cycles of cement-natural rubber latex stabilised unpaved road under cyclic tensile loading. International Journal of Pavement Engineering, 23(12), 4442–4453. doi:10.1080/10298436.2021.1950719.

Mustafa, Y. M. H., Al-Amoudi, O. S. B., Zami, M. S., & Al-Osta, M. A. (2023). Strength and durability assessment of stabilized Najd soil for usage as earth construction materials. Bulletin of Engineering Geology and the Environment, 82(2), 55. doi:10.1007/s10064-023-03075-w.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jair Arrieta-Baldovino, Ronaldo Izzo, Carlos Millan-Paramo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message