Estimate Suitable Location of Solar Power Plants Distribution by GIS Spatial Analysis

Baydaa Abdul Hussein Bedewy, Sophia Rezaq Ali Al-Timimy


This study proposes a model for the best investment in renewable energy plants that uses DEM, Spatial Analysis, and analysis of indicator weights by AHP to choose a suitable place to locate the solar plants, which increases their efficiency. This is because renewable energy is the most important component of future sustainability. In addition, the cities of Iraq, including Babylon, have increased the proportion of the population, which has led to high rates of urbanization and a lack of services. In particular, the need for services increased, especially electric power, which is characterized by its inefficiency and insufficiency. Yet, the governorate is a good source of solar energy and regular radiation. Therefore, the trend to use renewable energy is the optimal solution, and this manuscript proposes multiple criteria that can determine the optimal locations for building solar energy farms. So methods of analysis are the Digital Elevation Model (DEM), the slope of the earth, efficient distances from the city center, the main road networks and electricity distribution networks, and average solar brightness (hours/day) quantity. Finally, the spatial analysis of all indicators shows eight sites. By using criteria of analysis based on AHP analysis, the result is that six represent suitable sites chosen as sufficient space to locate solar plants. Consequently, the results of this manuscript for solar energy collection projects show percentages ranging between 2% and 37%, with areas starting with 10 ‎km2 and gradually rising towards the largest proposed area of 155 km2, distributed over the province so that the total proposed areas for solar energy collection projects will be about 422 km2. All that aim to achieve the best service in quality and quantity of renewable energy to establish sustainability and efficiency economic modeling in addition to increasing production efficiency.


Doi: 10.28991/CEJ-2023-09-05-013

Full Text: PDF


Spatial Distribution; Solar Power Plants; Suitability Location; GIS; AHP.


Liang, Y., & Hao, X. (2022). Can the Agglomeration of New Energy Industries Improve Environmental Efficiency?—Evidence from China. Sustainability (Switzerland), 14(14), 8961. doi:10.3390/su14148961.

Javadinejad, S., Dara, R., & Jafary, F. (2020). Climate change scenarios and effects on snow-melt runoff. Civil Engineering Journal (Iran), 6(9), 1715–1725. doi:10.28991/cej-2020-03091577.

Sidik, F., Supriyanto, B., Krisnawati, H., & Muttaqin, M. Z. (2018). Mangrove conservation for climate change mitigation in Indonesia. Wiley Interdisciplinary Reviews: Climate Change, 9(5), 529. doi:10.1002/wcc.529.

United Nations (2023). Implementation for people and planet. Available online: (accessed on April 2023). (In Arabic).

Iram, R., Anser, M. K., Awan, R. U., Ali, A., Abbas, Q., & Chaudhry, I. S. (2021). Prioritization of renewable solar energy to prevent energy insecurity: An integrated role. Singapore Economic Review, 66(2), 391–412. doi:10.1142/S021759082043002X.

Kamel Al-Rawe, M., Rezaq Ali Al-Timimy, S., & Yassir Hussain, K. (2021). Contemporary trends in sustainable urban planning Analytical Vision in Contemporary Global Experiences. IOP Conference Series: Earth and Environmental Science, 754(1), 012034. doi:10.1088/1755-1315/754/1/012034.

Mohtasham, J. (2015). Review Article-Renewable Energies. Energy Procedia, 74, 1289–1297. doi:10.1016/j.egypro.2015.07.774.

Chand, V. (2020). Conservation of Energy Resources for Sustainable Development: A Big Issue and Challenge for Future. Environmental Concerns and Sustainable Development, Springer, Singapore. doi:10.1007/978-981-13-5889-0_15.

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265–2300. doi:10.1016/j.rser.2007.05.001.

Kanniah, K. D., Kang, C. S., Sharma, S., & Amir, A. A. (2021). Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sensing, 13(8), 1427. doi:10.3390/rs13081427.

Vonnisa, M., Shimomai, T., Hashiguchi, H., & Marzuki, M. (2022). Retrieval of Vertical Structure of Raindrop Size Distribution from Equatorial Atmosphere Radar and Boundary Layer Radar. Emerging Science Journal, 6(3), 448-459. doi:10.28991/ESJ-2022-06-03-02.

Kokame, K., Sakata, T., Kokubo, Y., & Miyata, T. (2011). von Willebrand factor-to-ADAMTS13 ratio increases with age in a Japanese population. Journal of Thrombosis and Haemostasis, 9(7), 1426–1428. doi:10.1111/j.1538-7836.2011.04333.x.

Fotheringham, S., & Rogerson, P. (2013). Spatial analysis and GIS. CRC Press, London, United Kingdom. doi:10.1201/9781482272468.

Nabavi-Pelesaraei, A., Hosseinzadeh-Bandbafha, H., Qasemi-Kordkheili, P., Kouchaki-Penchah, H., & Riahi-Dorcheh, F. (2016). Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 103, 672–678. doi:10.1016/

Inman, R. H., Pedro, H. T. C., & Coimbra, C. F. M. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535–576. doi:10.1016/j.pecs.2013.06.002.

Tarrad, A. H. (2022). 3d numerical modeling to evaluate the thermal performance of single and double u-tube ground-coupled heat pump. HighTech and Innovation Journal, 3(2), 115-129. doi:10.28991/HIJ-2022-03-02-01.

Fathi, R., Tousi, B., & Galvani, S. (2021). A new approach for optimal allocation of photovoltaic and wind clean energy resources in distribution networks with reconfiguration considering uncertainty based on info-gap decision theory with risk aversion strategy. Journal of Cleaner Production, 295, 125984. doi:10.1016/j.jclepro.2021.125984.

Gong, J., Li, C., & Wasielewski, M. R. (2019). Advances in solar energy conversion. Chemical Society Reviews, 48(7), 1862–1864. doi:10.1039/c9cs90020a.

Shaikh, Mohd. R. S. (2017). A Review Paper on Electricity Generation from Solar Energy. International Journal for Research in Applied Science and Engineering Technology, V(IX), 1884–1889. doi:10.22214/ijraset.2017.9272.

Liu, Q., Yu, G., & Liu, J. J. (2009). Solar radiation as large-scale resource for energy-short world. Energy & Environment, 20(3), 319–329. doi:10.1260/095830509788066466.

Kandilli, C., & Ulgen, K. (2008). Solar illumination and estimating daylight availability of global solar irradiance. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(12), 1127–1140. doi:10.1080/15567030601100688.

Al-Amidi, M. M. (n.d.). The Impact of Climate on the Spread of Skin Diseases in Babylon province. Master Thesis, College of Education for Human Sciences, University of Babylon, Hillah, Iraq.

Perpiña Castillo, C., Batista e Silva, F., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 88, 86–99. doi:10.1016/j.enpol.2015.10.004.

Ministry of Transport. (2018). General Authority for Meteorology and Seismic Monitoring in Iraq. Climate Section, Ministry of Transport, Baghdad, Iraq.

Colak, H. E., Memisoglu, T., & Gercek, Y. (2020). Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renewable Energy, 149, 565–576. doi:10.1016/j.renene.2019.12.078.

Watson, J. J. W., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138(138), 20–31. doi:10.1016/j.landurbplan.2015.02.001.

Aydin, N. Y., Kentel, E., & Sebnem Duzgun, H. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conversion and Management, 70, 90–106. doi:10.1016/j.enconman.2013.02.004.

Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region Konya / Turkey. Renewable and Sustainable Energy Reviews, 28(28), 11–17. doi:10.1016/j.rser.2013.07.042.

Daood, J. M., Mandour, M. S., Al-Ghamdi, K. A. R. (2017). Determining the best sites for collecting solar energy in the Makkah Al-Mukarramah Administrative Region using multi-standard GIS. Eleventh National Forum for GIS Applications, 11-13 April, 2017, University Imam Abdul Rahman bin Faisal, Dammam, Saudi Arabia.

Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24(24), 544–556. doi:10.1016/j.rser.2013.03.019.

Yousif, K. M. (2012, May). Control of solar heat gain to reduce the energy consumption of buildings in Iraq. Proceedings of the World Renewable Energy Forum, 13-17 May, Denver, United States.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-013


  • There are currently no refbacks.

Copyright (c) 2023 Baydaa Abdul Hussein Bedewy, Sophia Rezaq Al-Timimy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.