Numerical Investigation of the Optimum Angle for Open Channel Junction
Abstract
Doi: 10.28991/CEJ-2023-09-05-07
Full Text: PDF
Keywords
References
Hassan, W. H., & Jalal, H. K. (2021). Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Applied Sciences, 3(2), 159. doi:10.1007/s42452-020-04124-9.
Hassan, W. H., Hussein, H. H., Alshammari, M. H., Jalal, H. K., & Rasheed, S. E. (2022). Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results in Engineering, 13, 100353. doi:10.1016/j.rineng.2022.100353.
Al-Mussawi, W. H., Al-Shammary, M. H., & Alwan, H. H. (2009). Three-dimensional numerical investigation of flow at 90 ° open channel junction. Journal of Kerbala University, 7(4), 260–272.
Jalal, H. K., & Hassan, W. H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. IOP Conference Series: Materials Science and Engineering, 745(1), 12150. doi:10.1088/1757-899X/745/1/012150.
Taylor, E. H. (1944). Flow Characteristics at Rectangular Open-Channel Junctions. Transactions of the American Society of Civil Engineers, 109(1), 893–902. doi:10.1061/taceat.0005772.
Best, J. L., & Reid, I. (1984). Separation Zone at Open-Channel Junctions. Journal of Hydraulic Engineering, 110(11), 1588–1594. doi:10.1061/(asce)0733-9429(1984)110:11(1588).
Gurram, S. K., Karki, K. S., & Hager, W. H. (1997). Subcritical Junction Flow. Journal of Hydraulic Engineering, 123(5), 447–455. doi:10.1061/(asce)0733-9429(1997)123:5(447).
Hsu, C.-C., Lee, W.-J., & Chang, C.-H. (1998). Subcritical Open-Channel Junction Flow. Journal of Hydraulic Engineering, 124(8), 847–855. doi:10.1061/(asce)0733-9429(1998)124:8(847).
Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on Flow at a 90° Open-Channel Junction. Journal of Hydraulic Engineering, 127(5), 340–350. doi:10.1061/(asce)0733-9429(2001)127:5(340).
Huang, J., Weber, L. J., & Lai, Y. G. (2002). Three-Dimensional Numerical Study of Flows in Open-Channel Junctions. Journal of Hydraulic Engineering, 128(3), 268–280. doi:10.1061/(asce)0733-9429(2002)128:3(268).
Baghlani, A., & Talebbeydokhti, N. (2013). Hydrodynamics of right-angled channel confluences by a 2D numerical model. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 37(C2), 271–283.
Ramamurthy, A. S., Qu, J., & Vo, D. (2007). Numerical and Experimental Study of Dividing Open-Channel Flows. Journal of Hydraulic Engineering, 133(10), 1135–1144. doi:10.1061/(asce)0733-9429(2007)133:10(1135).
Shakibainia, A., Tabatabai, M. R. M., & Zarrati, A. R. (2010). Three-dimensional numerical study of flow structure in channel confluences. Canadian Journal of Civil Engineering, 37(5), 772–781. doi:10.1139/L10-016.
Yang, Q. Y., Liu, T. H., Lu, W. Z., & Wang, X. K. (2013). Numerical simulation of confluence flow in open channel with dynamic meshes techniques. Advances in Mechanical Engineering, 2013, 860431. doi:10.1155/2013/860431.
Zaji, A. H., & Bonakdari, H. (2015). Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions. Flow Measurement and Instrumentation, 41, 81–89. doi:10.1016/j.flowmeasinst.2014.10.011.
Jalal, H. K., & Hassan, W. H. (2020). Effect of Bridge Pier Shape on Depth of Scour. IOP Conference Series: Materials Science and Engineering, 671(1), 12001. doi:10.1088/1757-899X/671/1/012001.
Bonakdari, H., & Zinatizadeh, A. A. (2011). Influence of position and type of Doppler flow meters on flow-rate measurement in sewers using computational fluid dynamic. Flow Measurement and Instrumentation, 22(3), 225–234. doi:10.1016/j.flowmeasinst.2011.03.001.
Sabbagh-Yazdi, S. R., & Bavandpour, M. (2022). Introducing ring collars and effective spiral threading elevation for cylindrical pier scour control. Marine Georesources & Geotechnology, 40(6), 639-654. doi:10.1080/1064119X.2021.1922555.
Bonakdari, H. (2006). Modeling of flows in sewers: application to the design of measurement points. Ph.D. Thesis, Université de Caen Normandie, Caen, France.
Koelling, C. (1996). SIMK-A new finite element model significantly improves the accuracy of flow measurements in sewers. 7th international conference on urban sorm drainage, 9-13 September, 1996, Hannover, Germany.
Hassan, W. H., Hussein, H. H., & Nile, B. K. (2022). The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundwater for Sustainable Development, 16, 100700. doi:10.1016/j.gsd.2021.100700.
Hughes, A. W., Longair, I. M., Ashley, R. M., & Kirby, K. (1996). Using an array of ultrasonic velocity transducers to improve the accuracy of large sewer mean velocity measurements. Water Science and Technology, 33(1), 1–12. doi:10.2166/wst.1996.0001.
Hilgenstock, A., & Ernst, R. (1996). Analysis of installation effects by means of computational fluid dynamics - CFD vs. experiments? Flow Measurement and Instrumentation, 7(3–4), 161–171. doi:10.1016/S0955-5986(97)88066-1.
Pollert, J., & Bares, V. (2002). Determination of velocity fields in a circular sewer. International Conference on Sewer Operation and Maintenance, Bradford, UK.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N., & Bertrand-Krajewski, J. L. (2012). Experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters. Water Science and Technology, 66(6), 1325–1332. doi:10.2166/wst.2012.319.
Sharifipour, M., Bonakdari, H., Zaji, A. H., & Shamshirband, S. (2015). Numerical investigation of flow field and flowmeter accuracy in open-channel junctions. Engineering Applications of Computational Fluid Mechanics, 9(1), 280–290. doi:10.1080/19942060.2015.1008963.
Al-Mussawi, W. H. (2009). Numerical analysis of velocity profile and separation zone in open channel junctions. Al-Qadisiyah Journal for Engineering Sciences, 2(2), 262-274.
Rooniyan, F. (2014). The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel. Engineering, Technology & Applied Science Research, 4(1), 576–580. doi:10.48084/etasr.395.
Pandey, A. K., & Mohapatra, P. K. (2021). Reduction of the Flow Separation Zone at Combining Open-Channel Junction by Applying Alternate Suction and Blowing. Journal of Irrigation and Drainage Engineering, 147(10). doi:10.1061/(asce)ir.1943-4774.0001611.
Pandey, A. K., & Mohapatra, P. K. (2022). Three-Dimensional Numerical Simulation of the Flood-Wave Propagation at a Combining Open-Channel Junction. Journal of Irrigation and Drainage Engineering, 148(11). doi:10.1061/(asce)ir.1943-4774.0001713.
Pandey, A. K., Mohapatra, P. K., & Jain, V. (2020). Equivalent Manning’s Roughness in Combining Open Channel Junction Flows. World Environmental and Water Resources Congress 2020. doi:10.1061/9780784482971.010.
Nikpour, M., & Khosravinia, P. (2021). Velocity Field Prediction in Open-Channels Junction using Data Driven Models. Irrigation and Water Engineering, 12(1), 104-121. doi:10.22125/iwe.2021.138256.
DOI: 10.28991/CEJ-2023-09-05-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Waqed H. Hassan, Nidaa Ali Shabat
This work is licensed under a Creative Commons Attribution 4.0 International License.