Numerical Investigation of the Optimum Angle for Open Channel Junction

Waqed H. Hassan, Nidaa Ali Shabat

Abstract


Numerous natural and artificial streams, including those for irrigation ditches, wastewater treatment facilities, and conveyance structures for fish movement, have open channel confluences. The flow dynamics at and around the junction are intricate; in particular, immediately downstream of the junction, the flow creates a zone of separation on the inner wall along with secondary recirculation patterns. The structure of this complicated flow depends on several factors, including the flow rates in both channels, the angle of confluence, the geometry of the channels, including the longitudinal slope and bed discordance, the roughness of the boundary, and the intensity of the turbulence. It also has a significant impact on bed erosion, bank scouring, etc. The objective of the current work is to calculate the velocity profile and the separation zone dimensions for four angles (30o, 45o, 60o, and 75o) through the simulation process, and the best angle using a three-dimensional model. This work gives a detailed application of the numerical solution (Finite Volume) via Flow 3D software. Results for two flow discharge ratios, q*=0.250 and q*=0.750 were shown; the numerical model and the experimental results agreed well. The findings are consistent with past research and demonstrate how the main channel flow pattern is affected by changes in the channel crossing angle, as well as how greater separation zones are produced in the main channel when the flow discharge ratio q* (main channel flow divided by total flow) is smaller. Analysis revealed that the separation zone's smallest diameter will be at the 75ocrossing angle.

 

Doi: 10.28991/CEJ-2023-09-05-07

Full Text: PDF


Keywords


Open Channel; Flow Pattern; Stream Lines; Junction Angle.

References


Hassan, W. H., & Jalal, H. K. (2021). Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Applied Sciences, 3(2), 159. doi:10.1007/s42452-020-04124-9.

Hassan, W. H., Hussein, H. H., Alshammari, M. H., Jalal, H. K., & Rasheed, S. E. (2022). Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results in Engineering, 13, 100353. doi:10.1016/j.rineng.2022.100353.

Al-Mussawi, W. H., Al-Shammary, M. H., & Alwan, H. H. (2009). Three-dimensional numerical investigation of flow at 90 ° open channel junction. Journal of Kerbala University, 7(4), 260–272.

Jalal, H. K., & Hassan, W. H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. IOP Conference Series: Materials Science and Engineering, 745(1), 12150. doi:10.1088/1757-899X/745/1/012150.

Taylor, E. H. (1944). Flow Characteristics at Rectangular Open-Channel Junctions. Transactions of the American Society of Civil Engineers, 109(1), 893–902. doi:10.1061/taceat.0005772.

Best, J. L., & Reid, I. (1984). Separation Zone at Open-Channel Junctions. Journal of Hydraulic Engineering, 110(11), 1588–1594. doi:10.1061/(asce)0733-9429(1984)110:11(1588).

Gurram, S. K., Karki, K. S., & Hager, W. H. (1997). Subcritical Junction Flow. Journal of Hydraulic Engineering, 123(5), 447–455. doi:10.1061/(asce)0733-9429(1997)123:5(447).

Hsu, C.-C., Lee, W.-J., & Chang, C.-H. (1998). Subcritical Open-Channel Junction Flow. Journal of Hydraulic Engineering, 124(8), 847–855. doi:10.1061/(asce)0733-9429(1998)124:8(847).

Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on Flow at a 90° Open-Channel Junction. Journal of Hydraulic Engineering, 127(5), 340–350. doi:10.1061/(asce)0733-9429(2001)127:5(340).

Huang, J., Weber, L. J., & Lai, Y. G. (2002). Three-Dimensional Numerical Study of Flows in Open-Channel Junctions. Journal of Hydraulic Engineering, 128(3), 268–280. doi:10.1061/(asce)0733-9429(2002)128:3(268).

Baghlani, A., & Talebbeydokhti, N. (2013). Hydrodynamics of right-angled channel confluences by a 2D numerical model. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 37(C2), 271–283.

Ramamurthy, A. S., Qu, J., & Vo, D. (2007). Numerical and Experimental Study of Dividing Open-Channel Flows. Journal of Hydraulic Engineering, 133(10), 1135–1144. doi:10.1061/(asce)0733-9429(2007)133:10(1135).

Shakibainia, A., Tabatabai, M. R. M., & Zarrati, A. R. (2010). Three-dimensional numerical study of flow structure in channel confluences. Canadian Journal of Civil Engineering, 37(5), 772–781. doi:10.1139/L10-016.

Yang, Q. Y., Liu, T. H., Lu, W. Z., & Wang, X. K. (2013). Numerical simulation of confluence flow in open channel with dynamic meshes techniques. Advances in Mechanical Engineering, 2013, 860431. doi:10.1155/2013/860431.

Zaji, A. H., & Bonakdari, H. (2015). Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions. Flow Measurement and Instrumentation, 41, 81–89. doi:10.1016/j.flowmeasinst.2014.10.011.

Jalal, H. K., & Hassan, W. H. (2020). Effect of Bridge Pier Shape on Depth of Scour. IOP Conference Series: Materials Science and Engineering, 671(1), 12001. doi:10.1088/1757-899X/671/1/012001.

Bonakdari, H., & Zinatizadeh, A. A. (2011). Influence of position and type of Doppler flow meters on flow-rate measurement in sewers using computational fluid dynamic. Flow Measurement and Instrumentation, 22(3), 225–234. doi:10.1016/j.flowmeasinst.2011.03.001.

Sabbagh-Yazdi, S. R., & Bavandpour, M. (2022). Introducing ring collars and effective spiral threading elevation for cylindrical pier scour control. Marine Georesources & Geotechnology, 40(6), 639-654. doi:10.1080/1064119X.2021.1922555.

Bonakdari, H. (2006). Modeling of flows in sewers: application to the design of measurement points. Ph.D. Thesis, Université de Caen Normandie, Caen, France.

Koelling, C. (1996). SIMK-A new finite element model significantly improves the accuracy of flow measurements in sewers. 7th international conference on urban sorm drainage, 9-13 September, 1996, Hannover, Germany.

Hassan, W. H., Hussein, H. H., & Nile, B. K. (2022). The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundwater for Sustainable Development, 16, 100700. doi:10.1016/j.gsd.2021.100700.

Hughes, A. W., Longair, I. M., Ashley, R. M., & Kirby, K. (1996). Using an array of ultrasonic velocity transducers to improve the accuracy of large sewer mean velocity measurements. Water Science and Technology, 33(1), 1–12. doi:10.2166/wst.1996.0001.

Hilgenstock, A., & Ernst, R. (1996). Analysis of installation effects by means of computational fluid dynamics - CFD vs. experiments? Flow Measurement and Instrumentation, 7(3–4), 161–171. doi:10.1016/S0955-5986(97)88066-1.

Pollert, J., & Bares, V. (2002). Determination of velocity fields in a circular sewer. International Conference on Sewer Operation and Maintenance, Bradford, UK.

Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N., & Bertrand-Krajewski, J. L. (2012). Experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters. Water Science and Technology, 66(6), 1325–1332. doi:10.2166/wst.2012.319.

Sharifipour, M., Bonakdari, H., Zaji, A. H., & Shamshirband, S. (2015). Numerical investigation of flow field and flowmeter accuracy in open-channel junctions. Engineering Applications of Computational Fluid Mechanics, 9(1), 280–290. doi:10.1080/19942060.2015.1008963.

Al-Mussawi, W. H. (2009). Numerical analysis of velocity profile and separation zone in open channel junctions. Al-Qadisiyah Journal for Engineering Sciences, 2(2), 262-274.

Rooniyan, F. (2014). The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel. Engineering, Technology & Applied Science Research, 4(1), 576–580. doi:10.48084/etasr.395.

Pandey, A. K., & Mohapatra, P. K. (2021). Reduction of the Flow Separation Zone at Combining Open-Channel Junction by Applying Alternate Suction and Blowing. Journal of Irrigation and Drainage Engineering, 147(10). doi:10.1061/(asce)ir.1943-4774.0001611.

Pandey, A. K., & Mohapatra, P. K. (2022). Three-Dimensional Numerical Simulation of the Flood-Wave Propagation at a Combining Open-Channel Junction. Journal of Irrigation and Drainage Engineering, 148(11). doi:10.1061/(asce)ir.1943-4774.0001713.

Pandey, A. K., Mohapatra, P. K., & Jain, V. (2020). Equivalent Manning’s Roughness in Combining Open Channel Junction Flows. World Environmental and Water Resources Congress 2020. doi:10.1061/9780784482971.010.

Nikpour, M., & Khosravinia, P. (2021). Velocity Field Prediction in Open-Channels Junction using Data Driven Models. Irrigation and Water Engineering, 12(1), 104-121. doi:10.22125/iwe.2021.138256.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Waqed H. Hassan, Nidaa Ali Shabat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message