Properties of Palm Oil Ash Geopolymer Containing Alumina Powder and Field Para Rubber Latex
Downloads
Doi: 10.28991/CEJ-2023-09-05-017
Full Text: PDF
Downloads
[2] Hawa, A., & Prachasaree, W. (2020). The development of compressive strength, drying shrinkage and microstructure of fly ash geopolymer with field para rubber latex. Revista Romana de Materiale/ Romanian Journal of Materials, 50(1), 59–68.
[3] Bhavsar, J. K., & Panchal, V. (2022). Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature. Civil Engineering Journal (Iran), 8(7), 1369–1387. doi:10.28991/CEJ-2022-08-07-05.
[4] Ge, X., Hu, X., & Shi, C. (2022). Impact of micro characteristics on the formation of high-strength Class F fly ash-based geopolymers cured at ambient conditions. Construction and Building Materials, 352, 129074. doi:10.1016/j.conbuildmat.2022.129074.
[5] Aziz, I. H., Abdullah, M. M. A. B., Mohd Salleh, M. A. A., Azimi, E. A., Chaiprapa, J., & Sandu, A. V. (2020). Strength development of solely ground granulated blast furnace slag geopolymers. Construction and Building Materials, 250, 118720. doi:10.1016/j.conbuildmat.2020.118720.
[6] Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites. Emerging Science Journal, 6(5), 967-984. doi:10.28991/ESJ-2022-06-05-04.
[7] Hawa, A., Prachasaree, W., & Tonnayopas, D. (2017). Effect of water-to-powder ratios on the compressive strength and microstructure of metakaolin based geopolymers. Indian Journal of Engineering and Materials Sciences, 24(6), 499–506.
[8] Trincal, V., Multon, S., Benavent, V., Lahalle, H., Balsamo, B., Caron, A., Bucher, R., Diaz Caselles, L., & Cyr, M. (2022). Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cement and Concrete Research, 162, 106993. doi:10.1016/j.cemconres.2022.106993.
[9] Allaoui, D., Nadi, M., Hattani, F., Majdoubi, H., Haddaji, Y., Mansouri, S., Oumam, M., Hannache, H., & Manoun, B. (2022). Eco-friendly geopolymer concrete based on metakaolin and ceramics sanitaryware wastes. Ceramics International, 48(23), 34793–34802. doi:10.1016/j.ceramint.2022.08.068.
[10] Safari, Z., Kurda, R., Al-Hadad, B., Mahmood, F., & Tapan, M. (2020). Mechanical characteristics of pumice-based geopolymer paste. Resources, Conservation and Recycling, 162, 105055. doi:10.1016/j.resconrec.2020.105055.
[11] Hamid, M. A., Yaltay, N., & Türkmenoğlu, M. (2022). Properties of pumice-fly ash based geopolymer paste. Construction and Building Materials, 316, 125665. doi:10.1016/j.conbuildmat.2021.125665.
[12] Gao, Y., Guo, T., Li, Z., Zhou, Z., & Zhang, J. (2022). Mechanism of retarder on hydration process and mechanical properties of red mud-based geopolymer cementitious materials. Construction and Building Materials, 356, 129306. doi:10.1016/j.conbuildmat.2022.129306.
[13] Sun, Z., Tang, Q., Xakalashe, B. S., Fan, X., Gan, M., Chen, X., Ji, Z., Huang, X., & Friedrich, B. (2022). Mechanical and environmental characteristics of red mud geopolymers. Construction and Building Materials, 321, 125564. doi:10.1016/j.conbuildmat.2021.125564.
[14] Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi:10.1016/j.matdes.2014.03.037.
[15] Abdulkareem, O. A., Ramli, M., & Matthews, J. C. (2019). Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Composites Part B: Engineering, 174, 106941. doi:10.1016/j.compositesb.2019.106941.
[16] Somna, R., Saowapun, T., Somna, K., & Chindaprasirt, P. (2022). Rice husk ash and fly ash geopolymer hollow block based on NaOH activated. Case Studies in Construction Materials, 16, 1092. doi:10.1016/j.cscm.2022.e01092.
[17] Islam, A., Alengaram, U. J., Jumaat, M. Z., Bashar, I. I., & Kabir, S. M. A. (2015). Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Construction and Building Materials, 101(1), 503–521. doi:10.1016/j.conbuildmat.2015.10.026.
[18] Hawa, A., Tonnayopas, D., Prachasaree, W., & Taneerananon, P. (2013). Investigating the effects of oil palm ash in metakaolin based geopolymer. Ceramics-Silikaty, 57(4), 319-327.
[19] Hawa, A., Tonnayopas, D., & Prachasaree, W. (2014). Performance Evaluation of Metakaolin Based Geopolymer Containing Parawood Ash and Oil Palm Ash Blends. Materials Science, 20(3), 339–344. doi:10.5755/j01.ms.20.3.4543.
[20] Liu, X., Jiang, J., Zhang, H., Li, M., Wu, Y., Guo, L., Wang, W., Duan, P., Zhang, W., & Zhang, Z. (2020). Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Applied Clay Science, 196, 105769. doi:10.1016/j.clay.2020.105769.
[21] Rukzon, S., & Chindaprasirt, P. (2009). Use of disposed waste ash from landfills to replace Portland cement. Waste Management & Research, 27(6), 588-594. doi:10.1177/0734242X09103189.
[22] Liu, M. Y. J., Alengaram, U. J., Santhanam, M., Jumaat, M. Z., & Mo, K. H. (2016). Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 120, 112–122. doi:10.1016/j.conbuildmat.2016.05.076.
[23] Zarina, Y., Mustafa Al Bakri, A. M., Kamarudin, H., Nizar, I. K., & Rafiza, A. R. (2013). Review on the various ash from palm oil waste as geopolymer material. Reviews on Advanced Materials Science, 34(1), 37–43.
[24] Amri, A., Fathurrahman, G., Najib, A. A., Awaltanova, E., Aman, & Chairul. (2018). Composites of palm oil fuel ash (POFA) based geopolymer and graphene oxide: Structural and compressive strength. IOP Conference Series: Materials Science and Engineering, 420(1), 12063. doi:10.1088/1757-899X/420/1/012063.
[25] Rattanasak, U., Chindaprasirt, P., & Suwanvitaya, P. (2010). Development of high volume rice husk ash alumino silicate composites. International Journal of Minerals, Metallurgy and Materials, 17(5), 654–659. doi:10.1007/s12613-010-0370-0.
[26] Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. doi:10.1016/j.conbuildmat.2013.11.039.
[27] Darvish, P., Johnson Alengaram, U., Soon Poh, Y., Ibrahim, S., & Yusoff, S. (2020). Performance evaluation of palm oil clinker sand as replacement for conventional sand in geopolymer mortar. Construction and Building Materials, 258, 120352. doi:10.1016/j.conbuildmat.2020.120352.
[28] Ong, E. L. (1998). Latex protein allergy and your gloves/Ong Eng Long, Esah Yip and Lai Pin Fah. Malaysian Rubber Board, Kuala Lumpur, Malaysia.
[29] Rubber Authority of Thailand. (2017). knowledge of latex and constituents in latex. Rubber Authority of Thailand, Bangkok, Thailand. Available online: https://km.raot.co.th/km-knowledge/detail/259 (accessed on April 2023).
[30] Office of Agricultural Economics. (2020). Para rubber: percentage and monthly output Including countries, regions and provinces. Office of Agricultural Economics, Bangkok, Thailand, Available online: https://www.oae.go.th/assets/portals/1/ fileups/prcaidata/files/pencent%2063.pdf (accessed on April 2023).
[31] Yaowarat, T., Suddeepong, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Vichitcholchai, N., Arulrajah, A., & Chinkulkijniwat, A. (2021). Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 282, 122704. doi:10.1016/j.conbuildmat.2021.122704.
[32] Kabir, S. M. A., Alengaram, U. J., Jumaat, M. Z., Yusoff, S., Sharmin, A., & Bashar, I. I. (2017). Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. Journal of Cleaner Production, 161, 477–492. doi:10.1016/j.jclepro.2017.05.002.
[33] Chandara, C., Sakai, E., Azizli, K. A. M., Ahmad, Z. A., & Hashim, S. F. S. (2010). The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construction and Building Materials, 24(9), 1590–1593. doi:10.1016/j.conbuildmat.2010.02.036.
[34] ASTM C136/C136M-19. (2019). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM international, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.
[35] ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. ASTM international, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[36] Hawa, A., Tonnayopas, D., & Prachasaree, W. (2013). Performance evaluation and microstructure characterization of metakaolin-based geopolymer containing oil palm ash. The Scientific World Journal, 2013, 857586. doi:10.1155/2013/857586.
[37] ASTM C109/C109M-16a. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM international, Pennsylvania, United States.
[38] Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials and Design, 59, 532–539. doi:10.1016/j.matdes.2014.03.037.
[39] Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials and Design, 56, 833–841. doi:10.1016/j.matdes.2013.11.080.
[40] Silva, P. De, Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. doi:10.1016/j.cemconres.2007.01.003.
[41] Kwek, S. Y., Awang, H., & Cheah, C. B. (2021). Influence of liquid-to-solid and alkaline activator (Sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkali-activated palm oil fuel ash geopolymer. Materials, 14(15), 4253. doi:10.3390/ma14154253.
[42] Salih, M. A., Abang Ali, A. A., & Farzadnia, N. (2014). Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 65, 592–603. doi:10.1016/j.conbuildmat.2014.05.031.
[43] Hawa, A., Salaemae, P., Prachasaree, W., & Tonnayopas, D. (2017). Compressive strength and microstructural characteristics of fly ash based geopolymer with high volume field para rubber latex. Revista Romana de Materiale/ Romanian Journal of Materials, 47(4), 462–469.
[44] Rath, B., Debnath, R., Paul, A., Velusamy, P., & Balamoorthy, D. (2020). Performance of natural rubber latex on calcined clay-based glass fiber-reinforced geopolymer concrete. Asian Journal of Civil Engineering, 21(6), 1051–1066. doi:10.1007/s42107-020-00261-z.
[45] Rath, B. (2022). Effect of natural rubber latex on the shrinkage behavior and porosity of geopolymer concrete. Structural Concrete, 23(4), 2150–2161. doi:10.1002/suco.202000788.
[46] Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1–3), 704–709. doi:10.1016/j.jhazmat.2009.11.089.
[47] He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Xu, J., Wang, P., & Zhou, Y. (2016). Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceramics International, 42(13), 14416–14422. doi:10.1016/j.ceramint.2016.06.033.
[48] Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. doi:10.1016/j.conbuildmat.2013.01.018.
[49] Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043–2056. doi:10.1016/j.jeurceramsoc.2011.04.036.
[50] Salih, M. A., Farzadnia, N., Abang Ali, A. A., & Demirboga, R. (2015). Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Construction and Building Materials, 93, 289–300. doi:10.1016/j.conbuildmat.2015.05.119.
[51] Walkley, B., Provis, J. L., San Nicolas, R., Sani, M. A., & Van Deventer, J. S. J. (2015). Stoichiometrically controlled C-(A)-S-H/N-A-S-H gel blends via alkali activation of synthetic precursors. Advances in Applied Ceramics, 114(7), 372–377. doi:10.1179/1743676115Y.0000000057.
[52] Li, W., Wang, Y., Yu, C., He, Z., Zuo, C., & Yu, Y. (2023). Nano-scale study on molecular structure, thermal stability, and mechanical properties of geopolymer. Journal of the Korean Ceramic Society, 60(2), 413–423. doi:10.1007/s43207-022-00276-z.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.