Mechanical and Postfire Structural Performances of Concrete under Elevated Temperatures
Abstract
Doi: 10.28991/CEJ-2023-09-08-04
Full Text: PDF
Keywords
References
Vishal, M., & Satyanarayanan, K. S. (2022). Analytical investigation on progressive collapse of 3-D reinforced concrete frames under high temperature. Resilient Infrastructure. Lecture Notes in Civil Engineering, 202. Springer, Singapore. doi:10.1007/978-981-16-6978-1_21.
Vishal, M., & Satyanarayanan, K. S. (2021). A review on research of fire-induced progressive collapse on structures. Journal of Structural Fire Engineering, 12(3), 410–425. doi:10.1108/JSFE-07-2020-0023.
Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447. doi:10.1002/pse.51.
Li, L. Y., Purkiss, J. A., & Tenchev, R. T. (2002). An engineering model for coupled heat and mass transfer analysis in heated concrete. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(2), 213–224. doi:10.1243/0954406021525142.
Vishal, M., & Satyanarayanan, K. S. (2023). Study on optimum concrete cover thickness in RC beam and columns under high temperature. Journal of Structural Fire Engineering. doi:10.1108/JSFE-11-2022-0035.
Murugan, V., & Srinivasan, S. K. (2022). Influence of cover thickness in structural frames exposed to fire and service loads. Environmental Science and Pollution Research, 29(57), 85955–85968. doi:10.1007/s11356-021-15925-9.
Bažant, Z. P., & Prat, P. C. (1988). Effect of temperature and humidity on fracture energy. ACI Materials Journal, 85(4), 262–271. doi:10.14359/2127.
Thelandersson, S. (1987). Modeling of combined thermal and mechanical action in concrete. Journal of Engineering Mechanics, 113(6), 893–906. doi:10.1061/(asce)0733-9399(1987)113:6(893).
Schneider, U. (1988). Concrete at high temperatures - A general review. Fire Safety Journal, 13(1), 55–68. doi:10.1016/0379-7112(88)90033-1.
Chan, S. Y. N., Peng, G. F., & Chan, J. K. W. (1996). Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures/Materiaux et Constructions, 29(10), 616–619. doi:10.1007/bf02485969.
Short, N. R., Purkiss, J. A., & Guise, S. E. (2001). Assessment of fire damaged concrete using colour image analysis. Construction and Building Materials, 15(1), 9–15. doi:10.1016/S0950-0618(00)00065-9.
Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892–900. doi:10.1061/(asce)0733-9399(1998)124:8(892).
Schrefler, B. A., Majorana, C. E., Khoury, G. A., & Gawin, D. (2002). Thermo‐hydro‐mechanical modelling of high performance concrete at high temperatures. Engineering Computations, 19(7), 787–819. doi:10.1108/02644400210444320.
Xu, P., Cui, Y., Dai, J., Zhang, M., & Ding, Y. (2022). High-temperature deterioration mechanism of textile-reinforced concrete with different cementitious materials. Journal of Materials in Civil Engineering, 34(1), 1–13. doi:10.1061/(asce)mt.1943-5533.0004027.
Varghese, A., N, A., Arulraj G, P., & Johnson Alengaram, U. (2019). Influence of fibers on bond strength of concrete exposed to elevated temperature. Journal of Adhesion Science and Technology, 33(14), 1521–1543. doi:10.1080/01694243.2019.1602889.
Zhao, J., Chen, L., Liu, G., & Meng, X. (2022). Compressive properties and microstructure of polymer-concrete under dry heat environment at 80 °C. Arabian Journal for Science and Engineering, 47(10), 12349–12364. doi:10.1007/s13369-021-06405-w.
Abolhasani, A., Shakouri, M., Dehestani, M., Samali, B., & Banihashemi, S. (2022). A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures. Engineering Fracture Mechanics, 261, 108221. doi:10.1016/j.engfracmech.2021.108221.
Phan, L. T., & Carino, N. J. (1998). Review of mechanical properties of HSC at elevated temperature. Journal of Materials in Civil Engineering, 10(1), 58–65. doi:10.1061/(asce)0899-1561(1998)10:1(58).
Handoo, S. K., Agarwal, S., & Agarwal, S. K. (2002). Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement and Concrete Research, 32(7), 1009–1018. doi:10.1016/S0008-8846(01)00736-0.
Nechnech, W., Meftah, F., & Reynouard, J. M. (2002). An elasto-plastic damage model for plain concrete subjected to high temperatures. Engineering Structures, 24(5), 597–611. doi:10.1016/S0141-0296(01)00125-0.
Shin, K. Y., Kim, S. B., Kim, J. H., Chung, M., & Jung, P. S. (2002). Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Engineering and Design, 212(1–3), 233–241. doi:10.1016/S0029-5493(01)00487-3.
Willam, K., Rhee, I., & Shing, B. (2004). Interface damage model for thermomechanical degradation of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 193(30–32), 3327–3350. doi:10.1016/j.cma.2003.09.020.
Youssef, M. A., & Moftah, M. (2007). General stress-strain relationship for concrete at elevated temperatures. Engineering Structures, 29(10), 2618–2634. doi:10.1016/j.engstruct.2007.01.002.
Caetano, H., Rodrigues, J. P. C., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete. Construction and Building Materials, 227, 116721. doi:10.1016/j.conbuildmat.2019.116721.
Reddy, D. H., & Ramaswamy, A. (2017). Influence of mineral admixtures and aggregates on properties of different concretes under high temperature conditions I: Experimental study. Journal of Building Engineering, 14, 103–114. doi:10.1016/j.jobe.2017.09.013.
IS 10262. (2019). Concrete Mix Proportioning-Guidelines. Bureau of Indian Standards, New Delhi, India.
IS 456. (2000). Plain and Reinforced Concrete. Bureau of Indian Standards, New Delhi, India.
Poon, C. S., Azhar, S., Anson, M., & Wong, Y. L. (2001). Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 31(9), 1291–1300. doi:10.1016/S0008-8846(01)00580-4.
Peng, G. F., & Huang, Z. S. (2008). Change in microstructure of hardened cement paste subjected to elevated temperatures. Construction and Building Materials, 22(4), 593–599. doi:10.1016/j.conbuildmat.2006.11.002.
Rithin, R. K., Crasta, V., & Praveen, B. M. (2015). Enhancement of optical, mechanical and micro structural properties in nanocomposite films of PVA doped with WO3 nanoparticles. International Journal of Structural Integrity, 6(3), 338–354. doi:10.1108/IJSI-08-2014-0036.
Raja Rajeshwari, B., & Sivakumar, M. V. N. (2022). Fracture properties of fibrous self-compacting concrete using three-point bend test and wedge splitting test methods. International Journal of Structural Integrity, 13(2), 278–296. doi:10.1108/IJSI-08-2021-0093.
DOI: 10.28991/CEJ-2023-09-08-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Vishal Murugan, Alireza Bahrami, Rakshit Srivastava, Satyanarayanan Kachabeswara Srinivasan, Prakash Murugan, Arvind Jayalakshmi Satyanarayanan
This work is licensed under a Creative Commons Attribution 4.0 International License.