Experimental and Numerical Parametric Studies on Inclined Skirted Foundation Resting on Sand
Downloads
Doi: 10.28991/CEJ-2023-09-07-017
Full Text: PDF
Downloads
[2] Al-Aghbari, M. Y., & Dutta, R. K. (2008). Performance of square footing with structural skirt resting on sand. Geomechanics and Geoengineering, 3(4), 271–277. doi:10.1080/17486020802509393.
[3] Eid, H. T., Alansari, O. A., Odeh, A. M., Nasr, M. N., & Sadek, H. A. (2009). Comparative study on the behavior of square foundations resting on confined sand. Canadian Geotechnical Journal, 46(4), 438–453. doi:10.1139/T08-134.
[4] El Wakil, A. Z. (2013). Bearing capacity of Skirt circular footing on sand. Alexandria Engineering Journal, 52(3), 359–364. doi:10.1016/j.aej.2013.01.007.
[5] Khatri, V. N., Debbarma, S. P., Dutta, R. K., & Mohanty, B. (2017). Pressure-settlement behavior of square and rectangular skirted footings resting on sand. Geomechanics and Engineering, 12(4), 689–705. doi:10.12989/gae.2017.12.4.689.
[6] Thakur, A., & Dutta, R. K. (2020). Experimental and numerical studies of skirted hexagonal footings on three sands. SN Applied Sciences, 2(3), 487. doi:10.1007/s42452-020-2239-9.
[7] ShabanaSalih, K., & Joseph, M. (2017). Behavior of Single Skirted Footing Model Resting on Non-Uniform Soil. Electronic Journal of Geotechnical Engineering, 22(1998), 4109–4126.
[8] Vijay, A., Akella, V., & Raghu Prasad, B. K. (2020). Experimental Studies and Numerical Validation on Bearing Capacity of Skirted Footings on c-Φ Soils. Advances in Structures, Systems and Materials. Lecture Notes on Multidisciplinary Industrial Engineering, Springer, Singapore. doi:10.1007/978-981-15-3254-2_9.
[9] Lepcha, O. N., Deb, P., & Pal, S. K. (2023). Parametric Studies on Skirted Foundation Resting on Sandy Soil. Soil Behavior and Characterization of Geomaterials. IGC 2021, Lecture Notes in Civil Engineering, 296, Springer, Singapore. doi:10.1007/978-981-19-6513-5_26.
[10] Al-Shyoukhi, T. (2023). Study the behavior of the Different Patterns of the Skirted Foundations. MSc. Thesis, Mansoura University, Egypt.
[11] Brinkgreve, R. & Broere, W. (2007). Plaxis 3D Foundation Version 2. Delft University of Technology & PLAXIS, The Netherlands.
[12] Magdy, K., Altahrany, A., & Elmeligy, M. (2022). Comparative Study of the Behaviors of Skirted Foundations of Different Shapes. International Journal of GEOMATE, 23(96), 104–111. doi:10.21660/2022.96.3328.
[13] Magdy, K. (2022). Comparative Study of the Behavior of Skirted Foundations of Different Shapes. Master Thesis, Mansoura University, Mansoura, Egypt.
[14] Eid, H. T. (2013). Bearing Capacity and Settlement of Skirted Shallow Foundations on Sand. International Journal of Geomechanics, 13(5), 645–652. doi:10.1061/(asce)gm.1943-5622.0000237.
[15] Schanz, T., Vermeer, P. A., & Bonnier, P. G. (2019). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, 281–296, Routledge, Milton Park, United Kingdom. doi:10.1201/9781315138206-27.
[16] Obrzud, R. & Truty, A. (2020). The Hardening Soil Model - A Practical Guidebook. Z. Soil. PC 100701 Report, Préverenges, Switzerland.
[17] Lengkeek, H. J. (2003). Estimation of sand stiffness parameters from cone resistance. PLAXIS Bulletin, (13), 15-19.
[18] Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics. Ten Years of PLAXIS International. Proceedings of the international symposium, Amsterdam, March 1999. (pp. 281–296). Springer. doi:10.1201/9781315138206-27.
[19] Hong, Y., Wang, L., Yang, B., & Zhang, J. (2019). Stress-dilatancy behaviour of bubbled fine-grained sediments. Engineering Geology, 260, 105196. doi:10.1016/j.enggeo.2019.105196.
[20] Maleki, M., & Mir Mohammad Hosseini, S. M. (2022). Assessment of the Pseudo-static seismic behavior in the soil nail walls using numerical analysis. Innovative Infrastructure Solutions, 7(4), 262. doi:10.1007/s41062-022-00861-5.
[21] Maleki, M., & Imani, M. (2022). Active lateral pressure to rigid retaining walls in the presence of an adjacent rock mass. Arabian Journal of Geosciences, 15(2), 152. doi:10.1007/s12517-022-09454-z.
[22] Maleki, M., Khezri, A., Nosrati, M., & Hosseini, S. M. M. M. (2023). Seismic amplification factor and dynamic response of soil-nailed walls. Modeling Earth Systems and Environment, 9(1), 1181–1198. doi:10.1007/s40808-022-01543-y.
[23] Maleki, M., & Nabizadeh, A. (2021). Seismic performance of deep excavation restrained by guardian truss structures system using quasi-static approach. SN Applied Sciences, 3(4), 417. doi:10.1007/s42452-021-04415-9.
[24] Das, B. M. (2011). Chapter 5 - Shallow Foundations: Ultimate Bearing Capacity. Principles of Foundation Engineering (7th Ed.), Cengage Learning, Boston, United States.
[25] NSI. (2022). Certificate of Calibration: National Institute of Standards. Ministry of High Education and Scientific Research. Cairo, Egypt.
[26] Tripathy, S. (2013). Load carrying capacity of skirted foundation on sand. Master Thesis. National Institute of Technology, Rourkela, Odisha, India.
[27] Juneja, G., & Sharma, R. K. (2022). Numerical Analysis of Square and Circular Skirted Footings Placed on Sand using PLAXIS 3D Software. Journal of Mining and Environment, 13(4), 1049–1066. doi:10.22044/jme.2022.12458.2261.
[28] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, Hoboken, United States.
[29] Yun, G., & Bransby, M. F. (2007). The undrained vertical bearing capacity of skirted foundations. Soils and Foundations, 47(3), 493–505. doi:10.3208/sandf.47.493.
[30] Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.