Evolution of Durability and Mechanical Behaviour of Mud Mortar Stabilized with Oil Shale Ash, Lime, and Cement

Walid Fouad Edris, Hamza Al-Fhaid, Mahmoud Al-Tamimi


The investigation into earthen construction technologies and materials is now acknowledged as a crucial area requiring further research. Earthen mortars are prevalent in both modern and traditional construction due to the abundance of earth material, their favorable thermal properties, and their low embodied energy. The objective of this study is to support the use of natural materials collected from north Jordan to enhance the mechanical properties and durability of mud mortar. The local soil was stabilized using Oil Shale Ash (OSA), Ordinary Portland Cement (OPC), and lime for producing mud mortar. Particle size analysis, plastic limit, liquid limit, XRD, and XRF were applied to assess the geotechnical characterization and mineral composition of the earthen stabilizers and local soil. In order to examine the mechanical properties (specifically compressive strength) and durability characteristics (such as water absorption and shrinkage) of mud mortar, a total of 8 mixtures were prepared. One of these mixtures served as a control, while the others were created by substituting soil with varying proportions of OSA, cement, and lime. The results show that the mud mortar contained 10% OSA and 10% cement, which exhibited the highest compressive strength. Moreover, an increase in the proportion of OSA in the soil led to a decrease in absorption and linear shrinkage, indicating that OSA is an effective stabilizing agent for mud mortar.


Doi: 10.28991/CEJ-2023-09-09-06

Full Text: PDF


Earth Building; Mud Mortar; Natural Pozzolans; Oil Sale Ash; Lime; Cement.


Fabbri, A., Morel, J. C., Aubert, J. E., Bui, Q. B., Gallipoli, D., & Reddy, B. V. (2022). Testing and characterisation of earth-based building materials and elements. Springer, Cham, Switzerland. doi:10.1007/978-3-030-83297-1.

Minke, G. (2006). Building with earth: design and technology of a sustainable architecture. Walter de Gruyter, Berlin, Germany.

Pierrehumbert, R. (2019). There is no Plan B for dealing with the climate crisis. Bulletin of the Atomic Scientists, 75(5), 215–221. doi:10.1080/00963402.2019.1654255.

Oliver, A. (2008). Modified earthen materials: An Overview of Research in Earthen Architecture Conservation Terra Literature Review, 97.

Guillaud, H. (2017). Markers of earthen construction modern revival. Proceedings of the Vernacular and Earthen Architecture: Conservation and Sustainability Proceedings of SosTierra, 14-16 September, 2017, Valencia, Spain.

Behnood, A. (2018). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17, 14–32. doi:10.1016/j.trgeo.2018.08.002.

Perrot, A., Rangeard, D., Menasria, F., & Guihéneuf, S. (2018). Strategies for optimizing the mechanical strengths of raw earth-based mortars. Construction and Building Materials, 167, 496–504. doi:10.1016/j.conbuildmat.2018.02.055.

Stathopoulos, K., Apostolopoulou, M., & Bakolas, A. (2021). Enhancement of water resistance of earthen mortars through stabilization. Construction and Building Materials, 289, 123180. doi:10.1016/j.conbuildmat.2021.123180.

Gomes, M. I., Faria, P., & Gonçalves, T. D. (2018). Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. Journal of Cleaner Production, 172, 2401–2414. doi:10.1016/j.jclepro.2017.11.170.

Sobczyńska, E., Terlikowski, W., & Gregoriou-Szczepaniak, M. (2021). Stability of treatment from earth-based mortar in conservation of stone structures in Tanais, Russia. Sustainability (Switzerland), 13(4), 1–20. doi:10.3390/su13042220.

Benidir, A., & Brara, A. (2021). Experimental assessment of mechanical behavior of a compressed stabilized earth blocks (CSEB) and walls. Journal of Materials and Engineering Structures, 8(1), 95-110.

Edris, W. F., Jaradat, Y., Al Azzam, A. O., Al Naji, H. M., & Abuzmero, S. A. (2020). Effect of volcanic tuff on the engineering properties of compressed earth block. Archives of Materials Science and Engineering, 106(1), 5–16. doi:10.5604/01.3001.0014.5928.

Edris, W., Matalkah, F., Rbabah, B., Sbaih, A. A., & Hailat, R. (2021). Characteristics of Hollow Compressed Earth Block Stabilized Using Cement, Lime, and Sodium Silicate. Civil and Environmental Engineering, 17(1), 200–208. doi:10.2478/cee-2021-0021.

Lekshmi, M. S., Vishnudas, S., & Nair, D. G. (2016). Experimental Study on the Physical Properties of Mud Mortar in Comparison with the Conventional Mortars. Civil Engineering and Urban Planning: An International Journal (CiVEJ), 3(2), 127–135. doi:10.5121/civej.2016.3211.

Rashmi, S., Jagadish, K. S., & Nethravathi, S. (2014). Stabilized Mud Mortar. International Journal of Research in Engineering and Technology, 03(18), 26–29. doi:10.15623/ijret.2014.0318005.

Walker, P. J. (2004). Strength and Erosion Characteristics of Earth Blocks and Earth Block Masonry. Journal of Materials in Civil Engineering, 16(5), 497–506. doi:10.1061/(asce)0899-1561(2004)16:5(497).

Paiva, R. de L. M., Martins, A. P. S., Caldas, L. R., Reales, O. A. M., & Toledo Filho, R. D. (2022). Earth-Based Mortars: Mix Design, Mechanical Characterization and Environmental Performance Assessment. Bio-Based Building Materials. doi:10.4028/www.scientific.net/cta.1.271.

Al-Fhaid, H., Edris, W. F., & Al-Tamimi, M. (2023). Potential utilization of oil shale as a stabilizing material for compressed Earth block. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1199744.

Vimala, S., & Kumarasamy, K. (2014). Studies on the strength of stabilized mud block masonry using different mortar proportions. International Journal of Emerging Technology and Advanced Engineering, 4(4), 720-724.

Karozou, A., Pavlidou, E., & Stefanidou, M. (2019). Enhancing Properties of Clay Mortars Using Nano-Additives. Solid State Phenomena, 286, 145–155. doi:10.4028/www.scientific.net/ssp.286.145.

Araya-Letelier, G., Concha-Riedel, J., Antico, F. C., & Sandoval, C. (2019). Experimental mechanical-damage assessment of earthen mixes reinforced with micro polypropylene fibers. Construction and Building Materials, 198, 762–776. doi:10.1016/j.conbuildmat.2018.11.261.

Sajanthan, K., Balagasan, B., & Sathiparan, N. (2019). Prediction of Compressive Strength of Stabilized Earth Block Masonry. Advances in Civil Engineering, 2019, 1–13. doi:10.1155/2019/2072430.

Yihdego, Y., Salem, H. S., Kafui, B. G., & Veljkovic, Z. (2018). Economic geology value of oil shale deposits: Ethiopia (Tigray) and Jordan. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(17), 2079–2096. doi:10.1080/15567036.2018.1488015.

Paaver, P., Paiste, P., Liira, M., & Kirsimäe, K. (2019). Alkali activation of Estonian CA-rich oil shale ashes: A synthesis. Oil Shale, 36(2S), 214–225. doi:10.3176/oil.2019.2S.11.

Alali, J., Abu Salah, A., Yasin, S., & Al Omari, W. (2015). Mineral Status and Future Opportunity: OIL SHALE. Technical Report, Ministry of Energy and Mineral Resources, Amman, Jordan.

Bsieso, M. S. (2003). Jordan’S Experience in Oil Shale Studies Employing Different Technologies. Oil Shale, 20(3S), 360. doi:10.3176/oil.2003.3s.09.

Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., & Meriste, T. (2012). Open-Air Deposition of Estonian Oil Shale Ash: Formation, State of Art, Problems and Prospects for the Abatement of Environmental Impact. Oil Shale, 29(4), 376. doi:10.3176/oil.2012.4.08.

Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., & Mõtlep, R. (2012). Oil shale CFBC ash cementation properties in ash fields. Fuel, 93, 172–180. doi:10.1016/j.fuel.2011.08.050.

ASTM D4318-17e1. (2005). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.

ASTM D3282-15. (2016). Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. ASTM International, Pennsylvania, United States. doi:10.1520/D3282-15.

ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.

El-Hasan, T., Abu-Jaber, N., & Abdelhadi, N. (2019). Hazardous toxic elements mobility in burned oil shale ash, and attempts to attain short-and long-term solidification. Oil Shale, 36(2S), 226–249. doi:10.3176/oil.2019.2S.12.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

Feng, X., Niu, X., Bai, X., Liu, X., & Sun, H. (2007). Cementing Properties of Oil Shale Ash. Journal of China University of Mining and Technology, 17(4), 498–502. doi:10.1016/s1006-1266(07)60133-3.

ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109-20..

IS: 1199-1959. (1959). Specification for method of test for water absorption concrete. Bureau of Indian Standards., New Delhi, India.

PN 85/B-04500. (1985). Building Mortars—Testing of Physical and Mechanical Properties. Polish Committee for Standardization, Warsaw, Poland.

Izemmouren, O., Guettala, A., & Guettala, S. (2015). Mechanical Properties and Durability of Lime and Natural Pozzolana Stabilized Steam-Cured Compressed Earth Block Bricks. Geotechnical and Geological Engineering, 33(5), 1321–1333. doi:10.1007/s10706-015-9904-6.

Reddy, B. V. V., & Gourav, K. (2011). Strength of lime-fly ash compacts using different curing techniques and gypsum additive. Materials and Structures/Materiaux et Constructions, 44(10), 1793–1808. doi:10.1617/s11527-011-9738-5.

Chan, S. Y. N., & Ji, X. (1998). Water sorptivity and chloride diffusivity of oil shale ash concrete. Construction and Building Materials, 12(4), 177–183. doi:10.1016/S0950-0618(98)00006-3.

Nematov, D. D., Kholmurodov, K. T., Husenzoda, M. A., Lyubchyk, A., & Burhonzoda, A. S. (2022). Molecular Adsorption of H2O on TiO2 and TiO2: Y Surfaces. Journal of Human, Earth, and Future, 3(2), 213-222. doi:10.28991/HEF-2022-03-02-07.

Wiehle, P., & Brinkmann, M. (2022). Material behaviour of unstabilised earth block masonry and its components under compression at varying relative humidity. Case Studies in Construction Materials, 17, 1663. doi:10.1016/j.cscm.2022.e01663.

Ruiz, G., Zhang, X., Edris, W. F., Cañas, I., & Garijo, L. (2018). A comprehensive study of mechanical properties of compressed earth blocks. Construction and Building Materials, 176, 566–572. doi:10.1016/j.conbuildmat.2018.05.077.

Wu, F., Li, G., Li, H. N., & Jia, J. Q. (2013). Strength and stress-strain characteristics of traditional adobe block and masonry. Materials and Structures/Materiaux et Constructions, 46(9), 1449–1457. doi:10.1617/s11527-012-9987-y.

DIN-18946. (2018). Earth Masonry Mortar—Requirements, Test and Labelling. Deutsches Institut Fur Normung, Berlin, Germany.

Andrade, F. A., Al-Qureshi, H. A., & Hotza, D. (2011). Measuring the plasticity of clays: A review. Applied Clay Science, 51(1–2), 1–7. doi:10.1016/j.clay.2010.10.028.

Tardy, Y., & Soler, J. M. (1993). Petrology of laterites and tropical soils. Masson, Paris, France. (In French).

Sabbà, M. F., Tesoro, M., Falcicchio, C., & Foti, D. (2021). Rammed earth with straw fibers and earth mortar: Mix design and mechanical characteristics determination. Fibers, 9(5), 30. doi:10.3390/fib9050030.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-06


  • There are currently no refbacks.

Copyright (c) 2023 Walid Ahmed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.