Effect of Class F Fly Ash on Strength Properties of Concrete
Downloads
Doi: 10.28991/CEJ-2023-09-09-011
Full Text: PDF
[2] Aslani, A., Hachem-Vermette, C., & Zahedi, R. (2023). Environmental impact assessment and potentials of material efficiency using by-products and waste materials. Construction and Building Materials, 378. doi:10.1016/j.conbuildmat.2023.131197.
[3] Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2021). Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Construction and Building Materials, 288. doi:10.1016/j.conbuildmat.2021.123066.
[4] Kumar Sinha, A., & Talukdar, S. (2023). Mechanical and bond behaviour of high volume Ultrafine-slag blended fly ash based alkali activated concrete. Construction and Building Materials, 383. doi:10.1016/j.conbuildmat.2023.131368.
[5] Zhang, C., Fu, J., & Song, W. (2023). Mechanical model and strength development evolution of high content fly ash–cement grouting material. Construction and Building Materials, 398. doi:10.1016/j.conbuildmat.2023.132492.
[6] Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. doi:10.5194/essd-10-195-2018.
[7] Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270, 2–20. doi:10.1016/j.conbuildmat.2020.121857.
[8] Nodehi, M., Ren, J., Shi, X., Debbarma, S., & Ozbakkaloglu, T. (2023). Experimental evaluation of alkali-activated and portland cement-based mortars prepared using waste glass powder in replacement of fly ash. In Construction and Building Materials, 394, 132124. doi:10.1016/j.conbuildmat.2023.132124.
[9] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237. doi:10.1016/j.conbuildmat.2019.117455.
[10] Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites. Emerging Science Journal, 6(5), 967-984. doi:10.28991/ESJ-2022-06-05-04.
[11] Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258. doi:10.1016/j.conbuildmat.2020.120606.
[12] Zahedi, M., Jafari, K., & Rajabipour, F. (2020). Properties and durability of concrete containing fluidized bed combustion (FBC) fly ash. Construction and Building Materials, 258. doi:10.1016/j.conbuildmat.2020.119663.
[13] Hino Junior, J. R., Balestra, C. E. T., & Medeiros-Junior, R. A. (2021). Comparison of test methods to determine resistance to chloride penetration in concrete: Sensitivity to the effect of fly ash. Construction and Building Materials, 277. doi:10.1016/j.conbuildmat.2021.122265.
[14] Sunayana, S., & Barai, S. V. (2021). Partially fly ash incorporated recycled coarse aggregate based concrete: Microstructure perspectives and critical analysis. Construction and Building Materials, 278. doi:10.1016/j.conbuildmat.2021.122322.
[15] Ali, B., Gulzar, M. A., & Raza, A. (2021). Effect of sulfate activation of fly ash on mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 277. doi:10.1016/j.conbuildmat.2021.122329.
[16] ASTM C-191-08. (2021). Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.
[17] ASTM C618. (1993). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral in Portland Cement Concrete". In Annual Book of ASTM Standards: Vol. 04.02. ASTM International, Pennsylvania, United States.
[18] BS 3892: Part 1: 1997. (1997). Specification for Pulverized-Fuel Ash for Use with Portland Cement. British Standard Institute, London, United Kingdom.
[19] DIN EN 450. (2012). Fly Ash for Concrete-Part 1: Definitions, Requirement and Quality Control. European Standards, Brussels, Belgium.
[20] Ali, A. A., Al-Attar, T. S., & Abbas, W. A. (2022). A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civil Engineering Journal, 8(3), 454-471. doi:10.28991/CEJ-2022-08-03-04.
[21] Wang, H. Y., Kuo, W. Ten, Lin, C. C., & Po-Yo, C. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532–537. doi:10.1016/j.conbuildmat.2012.11.021.
[22] Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials and Design, 36, 655–662. doi:10.1016/j.matdes.2011.11.043.
[23] Li, Z., Liang, X., Chen, Y., & Ye, G. (2021). Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste. Construction and Building Materials, 278, 122397. doi:10.1016/j.conbuildmat.2021.122397.
[24] Yousefieh, N., Joshaghani, A., Hajibandeh, E., & Shekarchi, M. (2017). Influence of fibers on drying shrinkage in restrained concrete. Construction and Building Materials, 148, 833-845. doi:10.1016/j.conbuildmat.2017.05.093.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.