Modelling Flood Wave Propagation as a Result of Dam Piping Failure Using 2D-HEC-RAS
Downloads
Doi: 10.28991/CEJ-2023-09-10-010
Full Text: PDF
[2] Talukdar, P., & Dey, A. (2019). Hydraulic failures of earthen dams and embankments. Innovative Infrastructure Solutions, 4(1), 42. doi:10.1007/s41062-019-0229-9.
[3] Haltas, I., Tayfur, G., & Elci, S. (2016). Two-dimensional numerical modeling of flood wave propagation in an urban area due to íœrkmez dam-break, İzmir, Turkey. Natural Hazards, 81(3), 2103–2119. doi:10.1007/s11069-016-2175-6.
[4] Amini, A., Arya, A., Eghbalzadeh, A., & Javan, M. (2017). Peak flood estimation under overtopping and piping conditions at Vahdat Dam, Kurdistan Iran. Arabian Journal of Geosciences, 10(6), 127. doi:10.1007/s12517-017-2854-y.
[5] Albu, L. M., Enea, A., Iosub, M., & Breaban, I. G. (2020). Dam breach size comparison for flood simulations. A HEC-RAS based, GIS Approach for Dracsani Lake, Sitna river, Romania. Water (Switzerland), 12(4), 1090. doi:10.3390/W12041090.
[6] Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of HEC-RAS (2D) for Flood Hazard Maps Generation for Yesil (Ishim) River in Kazakhstan. Water, 12(10), 2672. doi:10.3390/w12102672.
[7] Kumar, N., Kumar, M., Sherring, A., Suryavanshi, S., Ahmad, A., & Lal, D. (2020). Applicability of HEC-RAS 2D and GFMS for flood extent mapping: a case study of Sangam area, Prayagraj, India. Modeling Earth Systems and Environment, 6(1), 397–405. doi:10.1007/s40808-019-00687-8.
[8] Mohammed, L. A., Khassaf, S. I., & Al-Murshidi, K. R. (2019). Application HEC-RAS Model to Simulate the Flood Wave Due to Dam Failure. 4th Scientific International Conference Najaf (SICN). doi:10.1109/sicn47020.2019.9019369.
[9] Harsanto, P., Nursetiawan, Kamiel, B. P., & Cahyani, I. (2021). Riverbed Erosion Analysis of Winongo River Using HEC-RAS 5.0.7. IOP Conference Series: Earth and Environmental Science, 933(1), 012026. doi:10.1088/1755-1315/933/1/012026.
[10] Sarchani, S., Seiradakis, K., Coulibaly, P., & Tsanis, I. (2020). Flood inundation mapping in an ungauged basin. Water (Switzerland), 12(6), 1532. doi:10.3390/W12061532.
[11] Karim, I. R., Hassan, Z. F., Abdullah, H. H., & Alwan, I. A. (2021). 2D-Hec-Ras Modeling of Flood Wave Propagation in a Semi-Arid Area Due to Dam Overtopping Failure. Civil Engineering Journal, 7(9), 1501–1514. doi:10.28991/cej-2021-03091739.
[12] Hosseinzadeh-Tabrizi, S. A., Ghaeini-Hessaroeyeh, M., & Ziaadini-Dashtekhaki, M. (2022). Numerical simulation of dam-breach flood waves. Applied Water Science, 12(5), 1–9. doi:10.1007/s13201-022-01623-5.
[13] Mo, C., Shen, Y., Lei, X., Ban, H., Ruan, Y., Lai, S., Cen, W., & Xing, Z. (2023). Simulation of one-dimensional dam-break flood routing based on HEC-RAS. Frontiers in Earth Science, 10, 1–15. doi:10.3389/feart.2022.1027788.
[14] Paşa, Y., Peker, I. B., Hacı, A., & Gülbaz, S. (2023). Dam failure analysis and flood disaster simulation under various scenarios. Water Science and Technology, 87(5), 1214–1231. doi:10.2166/wst.2023.052.
[15] Mohamed, M., Karim, I., & Fattah, M. (2023). Impact of Dam Materials and Hydraulic Properties on Developing the Breaching Dimensions. Engineering and Technology Journal, 41(5), 716–723. doi:10.30684/etj.2023.138009.1368.
[16] Ministry of Water Resource in Iraq. (2019). General directorate of water resources management, hydrological studies center, Baghdad, Iraq.
[17] Al-Ansari, N., Adamo, N., Al-Hamdani, M. R., Sahar, K., & Al-Naemi, R. E. A. (2021). Mosul Dam Problem and Stability. Engineering, 13(03), 105–124. doi:10.4236/eng.2021.133009.
[18] Alwan, I., Majeed, Z., & Abbas, A. (2021). Water Flow Simulation of Tigris River Between Samara and Baghdad Based on HEC-RAS Model. Engineering and Technology Journal, 39(12), 1882–1893. doi:10.30684/etj.v39i12.1804.
[19] USGS (2023). Website Metadata from Satellite Image. Available online: http://glovis.usgs.gov (accessed on September 2023).
[20] Nama, A. H., Abbas, A. S., & Maatooq, J. S. (2022). Field and Satellite Images-Based Investigation of Rivers Morphological Aspects. Civil Engineering Journal (Iran), 8(7), 1339–1357. doi:10.28991/CEJ-2022-08-07-03.
[21] EM 1110-2-1146. (1993). River Hydraulics. Engineer Manual, US Army Corps of Engineers (USACE), Washington, United States.
[22] Mhmood, H. H., Yilmaz, M., & Sulaiman, S. O. (2023). Simulation of the flood wave caused by hypothetical failure of the Haditha Dam. Journal of Applied Water Engineering and Research, 11(1), 66–76. doi:10.1080/23249676.2022.2050312.
[23] Altawash, M. M., & Al Thamiry, H. A. (2022). Velocity Patterns inside the Proposed Makhool Dam Reservoir with Different Operation Plans. IOP Conference Series: Earth and Environmental Science, 1120(1). doi:10.1088/1755-1315/1120/1/012015.
[24] Bozkuş, Z. & Bağ, F. (2011). Virtual Failure Analysis of the Çınarcık Dam. Teknik Dergi, 22 (110), 1537-1549.
[25] Froehlich, D. C. (2008). Embankment Dam Breach Parameters and Their Uncertainties. Journal of Hydraulic Engineering, 134(12), 1708–1721. doi:10.1061/(asce)0733-9429(2008)134:12(1708).
[26] Brunner, G.W. (2016). HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0.; Hydrologic Engineering Center: Davis, California, United States.
[27] USACE (2022). HEC-RAS River Analysis System. User's Manual, Version 6.2, Hydrologic Engineering Center. US Army Corps of Engineers (USACE), Washington, United States.
[28] Ministry of Water Resources. (2020). Records of Field Observations Data. State department of the operation of irrigation and deraigned projects, Baghdad, Iraq.
[29] Al-Taiee, T. M., & Rasheed, A. M. (2009). Simulation Tigris River flood wave in Mosul city due to a hypothetical Mosul dam break. Damascus University Journal, 25(2), 17-36.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
