Implementing Management Practices for Enhancing Water-Food Nexus Under Climate Change

Noor Sabah, Mustafa Al-Mukhtar, Khalid Shemal


The current investigation aims to develop a management strategy to enhance the relationship between water and food in the Euphrates River Basin, Iraq. The research methodology utilized the LARS-WG model to generate weather data for the future period (2020–2050) for the CanESM2 model. The weather data was subsequently employed in the CROPWAT model to estimate crop water requirements. Finally, the Water Evaluating and Planning (WEAP) model analyzed the great-inhabitant growth rate scenario (5%), climate change scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5), and management scenarios. The WEAP model was initially calibrated and validated utilizing several statistical metrics, viz., the root mean square (RMS), Nash-Sutcliffe coefficient efficiency (NSE), and the coefficient of determination (R2). Results revealed a superior performance of the WEAP model in terms of the statistical metrics utilized. The findings illustrate that the projected water demand under RCP 2.6, RCP4.5, and RCP8.5 scenarios and the inhabitants growth scenario increased by 49%, 54%, and 56%, respectively, in the year 2050 compared to the reference scenario. In addition, the findings indicate that the water demand would decrease by 59% under the considered management scenario. Accordingly, the investigation recommends implementing water management practices, especially adaptation measures for climate change.


Doi: 10.28991/CEJ-2023-09-12-010

Full Text: PDF


Climate Change; CROPWAT; WEAP; Water Security; Nexus; Euphrates River Basin.


Guan, X., & Mascaro, G. (2023). Impacts of climate change on the food-water nexus in central Arizona. Agricultural and Forest Meteorology, 333, 109413. doi:10.1016/j.agrformet.2023.109413.

Geethalakshmi, V., Gowtham, R., Bhuvaneswari, K., Mohan Kumar, S., Priyanka, S., Rajavel, M., & Balakrishnan, N. (2023). Sustainable land-water-food nexus management: Integrated modelling approach. Journal of Agrometeorology, 25(1), 61–67. doi:10.54386/jam.v25i1.2052.

Ngammuangtueng, P., Nilsalab, P., Chomwong, Y., Wongruang, P., Jakrawatana, N., Sandhu, S., & Gheewala, S. H. (2023). Water-energy-food nexus of local bioeconomy hub and future climate change impact implication. Journal of Cleaner Production, 399, 136543. doi:10.1016/j.jclepro.2023.136543.

Sukhwani, V., & Shaw, R. (2022). An integrated governance approach towards a water-energy-food nexus and climate change. Handbook on Climate Change and Disasters. Edward Elgar Publishing, Cheltenham, United Kingdom. doi:10.4337/9781800371613.00053.

Javed, S., Sardar, A., Afzal, A., Malik, A. M., Cheema, M. J. M., & Kanwal, S. (2022). Managing the Food Security Nexus under Climate Change: Recent Advances in Precision Agriculture Practices in Pakistan. Environmental Sciences Proceedings, 23(1), 2. doi:10.3390/environsciproc2022023002.

Salam, P. A., Shrestha, S., Pandey, V. P., & Anal, A. K. (2017). Water-Energy-Food Nexus. Geophysical Monograph Series, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119243175.

Huckleberry, J. K., & Potts, M. D. (2019). Constraints to implementing the food-energy-water nexus concept: Governance in the Lower Colorado River Basin. Environmental Science and Policy, 92, 289–298. doi:10.1016/j.envsci.2018.11.027.

Momblanch, A., Papadimitriou, L., Jain, S. K., Kulkarni, A., Ojha, C. S. P., Adeloye, A. J., & Holman, I. P. (2019). Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system. Science of the Total Environment, 655, 35–47. doi:10.1016/j.scitotenv.2018.11.045.

De Laurentiis, V., Hunt, D. V. L., & Rogers, C. D. F. (2016). Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability (Switzerland), 8(1), 95. doi:10.3390/su8010095.

Ringler, C., Bhaduri, A., & Lawford, R. (2013). The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Current Opinion in Environmental Sustainability, 5(6), 617–624. doi:10.1016/j.cosust.2013.11.002.

Leck, H., Conway, D., Bradshaw, M., & Rees, J. (2015). Tracing the Water-Energy-Food Nexus: Description, Theory and Practice. Geography Compass, 9(8), 445–460. doi:10.1111/gec3.12222.

Kulshreshtha, S. N. (1998). A global outlook for water resources to the year 2025. Water resources management, 12, 167-184. doi:10.1023/A:1007957229865.

Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134(3), 387–401. doi:10.1007/s10584-014-1084-5.

Liu, J., Wang, Y., Yu, Z., Cao, X., Tian, L., Sun, S., & Wu, P. (2017). A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecological Indicators, 72, 870–880. doi:10.1016/j.ecolind.2016.09.021.

Bao, C., & He, D. (2015). The causal relationship between urbanization, economic growth and water use change in provincial China. Sustainability (Switzerland), 7(12), 16076–16085. doi:10.3390/su71215803.

Saraswat, C., Kumar, P., & Mishra, B. K. (2016). Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environmental Science and Policy, 64, 101–117. doi:10.1016/j.envsci.2016.06.018.

Hong, X., Guo, S., Wang, L., Yang, G., Liu, D., Guo, H., & Wang, J. (2016). Evaluating water supply risk in the middle and lower reaches of Hanjiang River Basin based on an integrated optimal water resources allocation model. Water (Switzerland), 8(9), 364. doi:10.3390/w8090364.

Chen, Y., Takeuchi, K., Xu, C., Chen, Y., & Xu, Z. (2006). Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrological Processes, 20(10), 2207–2216. doi:10.1002/hyp.6200.

Hamad, M. (2015). The Integrated Management for Water Resources in Al-Anbar Governorate. Ph.D. Thesis, St Clements University, Turks and Caicos Islands.

Haddad, M., Jayousi, A., & Hantash, S. A. (2007). Applicability of WEAP as water management decision support system tool on localized area of watershed scales: Tulkarem district in Palestine as case study. 11th International Water Technology Conference, IWTC, March, 2007, Sharm El-Sheikh, Egypt.

Salih, L. M. M., & Al-Dulaimi, S. A. A. (2019). Hydraulic Condition of Euphrates in Iraq and its Effects on Irrigation Projects. Al-Adab Journal, 2(131 Supplement 2), 283-310.

Al-Ansari, N., Adamo, N., Sissakian, V., Knutsson, S., & Laue, J. (2018). Water resources of the Euphrates River catchment. Journal of Earth Sciences and Geotechnical Engineering, 8(3), 1-20.

Perera, B. J. C., James, B., & Kularathna, M. D. U. (2005). Computer software tool REALM for sustainable water allocation and management. Journal of Environmental Management, 77(4), 291–300. doi:10.1016/j.jenvman.2005.06.014.

Omar, M. M. (2013). Evaluation of actions for better water supply and demand management in Fayoum, Egypt using RIBASIM. Water Science, 27(54), 78–90. doi:10.1016/j.wsj.2013.12.008.

Cai, X., Kam, S. P., Yen, B. T., Sood, A., & Chu Thai, H. (2014). CaWAT–A catchment water allocation tool for integrated irrigation and aquaculture development in small watersheds. 11th International Conference on Hydroinformatics, HIC 2014, 17-21 August, 2014, New York, United States.

Cutlac, I.-M., & Horbulyk, T. M. (2011). Optimal Water Allocation under Short-Run Water Scarcity in the South Saskatchewan River Basin. Journal of Water Resources Planning and Management, 137(1), 92–100. doi:10.1061/(asce)wr.1943-5452.0000092.

Inam, A., Adamowski, J., Prasher, S., Halbe, J., Malard, J., & Albano, R. (2017). Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management – Part 1: Model development. Journal of Hydrology, 551, 596–618. doi:10.1016/j.jhydrol.2017.03.039.

Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005). WEAP21 - A demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics. Water International, 30(4), 487–500. doi:10.1080/02508060508691893.

de Larramendi, H., Dunne, C. W., Lange, M. A., & Teevan, C. (2020). IEMed Mediterranean Yearbook 2020. European Institute of the Mediterranean (IEMed), Barcelona, Spain.

Gleick, P. H. (2019). Water as a weapon and casualty of armed conflict: A review of recent water-related violence in Iraq, Syria, and Yemen. Wiley Interdisciplinary Reviews: Water, 6(4), 1351. doi:10.1002/wat2.1351.

Edenhofer, O., Madruga, R. P., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., & von Stechow, C. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. In Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. doi:10.1017/CBO9781139151153.

Guler, Y., & Kumar, P. (2022). Climate change policy and performance of Turkiye in the EU harmonization process. Frontiers in Sustainable Cities, 4, 1070154. doi:10.3389/frsc.2022.1070154.

Fader, M., Giupponi, C., Burak, S., Dakhlaoui, H., Koutroulis, A., Lange, M. A., ... & Sanz-Cobeña, A. (2020). First Mediterranean Assessment Report–Chapter 3.1: Resources–Water. Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report., 181-236, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France. doi:10.5281/zenodo.7101074.

Hunter, C., Gironás, J., Bolster, D., & Karavitis, C. A. (2015). A dynamic, multivariate sustainability measure for robust analysis of water management under climate and demand uncertainty in an arid environment. Water (Switzerland), 7(11), 5928–5958. doi:10.3390/w7115928.

Vicuña, S., Garreaud, R. D., & McPhee, J. (2011). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 105(3–4), 469–488. doi:10.1007/s10584-010-9888-4.

Rochdane, S., Reichert, B., Messouli, M., Babqiqi, A., & Khebiza, M. Y. (2012). Climate change impacts on water supply and demand in Rheraya watershed (Morocco), with potential adaptation strategies. Water (Switzerland), 4(1), 28–44. doi:10.3390/w4010028.

Bhave, A. G., Mishra, A., & Raghuwanshi, N. S. (2013). A combined bottom-up and top-down approach for assessment of climate change adaptation options. Journal of Hydrology, 518(PA), 150–161. doi:10.1016/j.jhydrol.2013.08.039.

Semenov, M. A., Barrow, E. M., & Lars-Wg, A. (2002). A stochastic weather generator for use in climate impact studies. User Manual; Rothamsted Research: Hertfordshire, United Kingdom, 1-27.

Semenov, M. A., Pilkington-Bennett, S., & Calanca, P. (2013). Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set. Climate Research, 57(1), 1–9. doi:10.3354/cr01164.

Räisänen, J. (2016). Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models. Climate Dynamics, 46(1–2), 339–353. doi:10.1007/s00382-015-2587-0.

Masanganise, J., Mapuwei, T. W., Magodora, M., & Basira, K. (2014). Multi-model projections of temperature and rainfall under representative concentration pathways in Zimbabwe. International Journal of Science and Technology, 3(4), 229-240.

Chen, H., Guo, J., Zhang, Z., & Xu, C. Y. (2013). Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theoretical and Applied Climatology, 113(3–4), 363–375. doi:10.1007/s00704-012-0793-9.

Karamouz, M., Semsaryazdi, M., Ahmadi, B., & Ahmadi, A. (2010). Climate change impacts on crop water requirements: a case study. 1st IWA Malaysia young water professionals conference, international water association, 2-4 March, 2010, Kuala Lumpur, Malaysia.

Kumari, A., Upadhyaya, A., Jeet, P., Al-Ansari, N., Rajput, J., Sundaram, P. K., Saurabh, K., Prakash, V., Singh, A. K., Raman, R. K., Gaddikeri, V., & Kuriqi, A. (2022). Estimation of Actual Evapotranspiration and Crop Coefficient of Transplanted Puddled Rice Using a Modified Non-Weighing Paddy Lysimeter. Agronomy, 12(11), 2850. doi:10.3390/agronomy12112850.

Daifallah, T., & Hani, A. (2018). Water demand management is solution of water stress?: a case study of the Kebir-west river basin in northern Algeria. Water and Energy International, 60(11), 62-66.

Sieber, J. (2006). WEAP water evaluation and planning system. 3rd International Congress on Environmental Modelling and Software, 9-13 July, Burlington, United States.

Agarwal, S., Patil, J. P., Goyal, V. C., & Singh, A. (2019). Assessment of water supply–demand using water evaluation and planning (WEAP) model for Ur river watershed, Madhya Pradesh, India. Journal of the Institution of Engineers (India): Series A, 100, 21-32. doi:10.1007/s40030-018-0329-0.

Arranz, R., & McCartney, M. P. (2007). Application of the Water Evaluation and Planning (WEAP) model to assess future water demands and resources in the Olifants Catchment, South Africa (Volume 116). International Water Management Institute, Colombo, Sri Lanka.

Mounir, Z. M., Ma, C. M., & Amadou, I. (2011). Application of water evaluation and planning (WEAP): A model to assess future water demands in the Niger River (in Niger Republic). Modern Applied Science, 5(1), 38–49. doi:10.5539/mas.v5n1p38.

Amin, A., Iqbal, J., Asghar, A., & Ribbe, L. (2018). Analysis of current and future water demands in the Upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP Model. Water (Switzerland), 10(5), 537. doi:10.3390/w10050537.

Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10), 1-3. doi:10.1029/2011WR010962.

Matchett, E. L., & Fleskes, J. P. (2017). Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley. PLoS ONE, 12(1), 169780. doi:10.1371/journal.pone.0169780.

Kou, L., Li, X., Lin, J., & Kang, J. (2018). Simulation of urban water resources in Xiamen based on a WEAP model. Water (Switzerland), 10(6), 732. doi:10.3390/w10060732.

Touseef, M., Chen, L., & Yang, W. (2021). Assessment of surface water availability under climate change using coupled SWAT-WEAP in hongshui river basin, China. ISPRS International Journal of Geo-Information, 10(5), 298. doi:10.3390/ijgi10050298.

Noon, A. M., Ahmed, H. G. I., & Sulaiman, S. O. (2021). Assessment of water demand in Al-Anbar province- Iraq. Environment and Ecology Research, 9(2), 64–75. doi:10.13189/eer.2021.090203.

Brown, T. C., Mahat, V., & Ramirez, J. A. (2019). Adaptation to Future Water Shortages in the United States Caused by Population Growth and Climate Change. Earth’s Future, 7(3), 219–234. doi:10.1029/2018EF001091.

M. Al-Mukhtar, M., & S. Mutar, G. (2021). Modelling of Future Water Use Scenarios Using WEAP Model: A Case Study in Baghdad City, Iraq. Engineering and Technology Journal, 39(3A), 488–503. doi:10.30684/etj.v39i3a.1890.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-010


  • There are currently no refbacks.

Copyright (c) 2024 Noor Sabah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.